141 research outputs found

    Gorlin syndrome associated with small bowel carcinoma and mesenchymal proliferation of the gastrointestinal tract: case report and review of literature

    Get PDF
    <p>Abstract</p> <p>Background and Case Presentation</p> <p>A patient with nevoid basal cell carcinoma syndrome (Gorlin syndrome) presented with two unusual clinical features, i.e. adenocarcinoma of the small bowel and extensive mesenchymal proliferation of the lower gastrointestinal tract.</p> <p>Conclusions</p> <p>We discuss the possibility that these two features are pathogenetically linked to the formerly undescribed patient's <it>PTCH </it>germ line mutation.</p

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    Acrolein Induces Endoplasmic Reticulum Stress and Causes Airspace Enlargement

    Get PDF
    BACKGROUND: Given the relative abundance and toxic potential of acrolein in inhaled cigarette smoke, it is surprising how little is known about the pulmonary and systemic effects of acrolein. Here we test the hypothesis whether systemic administration of acrolein could cause endoplasmic reticulum (ER) stress, and lung cell apoptosis, leading to the enlargement of the alveolar air spaces in rats. METHODS: Acute and chronic effects of intraperitoneally administered acrolein were tested. Mean alveolar airspace area was measured by using light microscopy and imaging system software. TUNEL staining and immunohistochemistry (IHC) for active caspase 3 and Western blot analysis for active caspase 3, and caspase 12 were performed to detect apoptosis. The ER-stress related gene expression in the lungs was determined by Quantitative real-time PCR analysis. Acrolein-protein adducts in the lung tissue were detected by IHC. RESULTS: Acute administration of acrolein caused a significant elevation of activated caspase 3, upregulation of VEGF expression and induced ER stress proteins in the lung tissue. The chronic administration of acrolein in rats led to emphysematous lung tissue remodeling. TUNEL staining and IHC for cleaved caspase 3 showed a large number of apoptotic septal cells in the acrolein-treated rat lungs. Chronic acrolein administration cause the endoplasmic reticulum stress response manifested by significant upregulation of ATF4, CHOP and GADd34 expression. In smokers with COPD there was a considerable accumulation of acrolein-protein adducts in the inflammatory, airway and vascular cells. CONCLUSIONS: Systemic administration of acrolein causes endoplasmic reticulum stress response, lung cell apoptosis, and chronic administration leads to the enlargement of the alveolar air spaces and emphysema in rats. The substantial accumulation of acrolein-protein adducts in the lungs of COPD patients suggest a role of acrolein in the pathogenesis of emphysema

    Discovery of the inhibitory effect of a phosphatidylinositol derivative on P-glycoprotein by virtual screening followed by <i>in vitro</i> cellular studies

    Get PDF
    P-glycoprotein is capable of effluxing a broad range of cytosolic and membrane penetrating xenobiotic substrates, thus leading to multi-drug resistance and posing a threat for the therapeutic treatment of several diseases, including cancer and central nervous disorders. Herein, a virtual screening campaign followed by experimental validation in Caco-2, MDKCII, and MDKCII mdr1 transfected cell lines has been conducted for the identification of novel phospholipids with P-gp transportation inhibitory activity. Phosphatidylinositol-(1,2-dioctanoyl)-sodium salt (8∶0 PI) was found to significantly inhibit transmembrane P-gp transportation in vitro in a reproducible-, cell line-, and substrate-independent manner. Further tests are needed to determine whether this and other phosphatidylinositols could be co-administered with oral drugs to successfully increase their bioavailability. Moreover, as phosphatidylinositols and phosphoinositides are present in the human diet and are known to play an important role in signal transduction and cell motility, our finding could be of substantial interest for nutrition science as well

    The behaviour of inositol 1,3,4,5,6-pentakisphosphate in the presence of the major biological metal cations

    Get PDF
    The inositol phosphates are ubiquitous metabolites in eukaryotes, of which the most abundant are inositol hexakisphosphate (InsP6) and inositol 1,3,4,5,6-pentakisphosphate [Ins(1,3,4,5,6)P5)]. These two compounds, poorly understood functionally, have complicated complexation and solid formation behaviours with multivalent cations. For InsP6, we have previously described this chemistry and its biological implications (Veiga et al. in J Inorg Biochem 100:1800, 2006; Torres et al. in J Inorg Biochem 99:828, 2005). We now cover similar ground for Ins(1,3,4,5,6)P5, describing its interactions in solution with Na+, K+, Mg2+, Ca2+, Cu2+, Fe2+ and Fe3+, and its solid-formation equilibria with Ca2+ and Mg2+. Ins(1,3,4,5,6)P5 forms soluble complexes of 1:1 stoichiometry with all multivalent cations studied. The affinity for Fe3+ is similar to that of InsP6 and inositol 1,2,3-trisphosphate, indicating that the 1,2,3-trisphosphate motif, which Ins(1,3,4,5,6)P5 lacks, is not absolutely necessary for high-affinity Fe3+ complexation by inositol phosphates, even if it is necessary for their prevention of the Fenton reaction. With excess Ca2+ and Mg2+, Ins(1,3,4,5,6)P5 also forms the polymetallic complexes [M4(H2L)] [where L is fully deprotonated Ins(1,3,4,5,6)P5]. However, unlike InsP6, Ins(1,3,4,5,6)P5 is predicted not to be fully associated with Mg2+ under simulated cytosolic/nuclear conditions. The neutral Mg2+ and Ca2+ complexes have significant windows of solubility, but they precipitate as [Mg4(H2L)]·23H2O or [Ca4(H2L)]·16H2O whenever they exceed 135 and 56 μM in concentration, respectively. Nonetheless, the low stability of the [M4(H2L)] complexes means that the 1:1 species contribute to the overall solubility of Ins(1,3,4,5,6)P5 even under significant Mg2+ or Ca2+ excesses. We summarize the solubility behaviour of Ins(1,3,4,5,6)P5 in straightforward plots

    Methodology of calculation of construction and hydrodynamic parameters of a foam layer apparatus for mass-transfer processes

    Get PDF
    Промислова реалізація методу стабілізації газорідинного шару дозволяє значно розширити галузь застосування пінних апаратів і відкриває нові можливості інтенсифікації технологічних процесів з одночасним створенням маловідходних технологій. У статті встановлені основні параметри, що впливають на гідродинаміку пінних апаратів, розглянуті основні конструкції та режими роботи пінних апаратів. Виявлено зв'язок гідродинамічних параметрів. Розглянуто гідродинамічні закономірності пінного шару. Вказані фактори, що впливають на процес масообміну, як в газовій, так і в рідкій фазах. Проведений аналіз ряду досліджень показав, що перспективним напрямком інтенсифікації процесу масообміну є розробка апаратів з трифазним псевдозрідженим шаром зрошуваної насадки складних форм із сітчастих матеріалів. Отже, необхідне проведення спеціальних досліджень гідродинамічних режимів роботи апарату з сітчастою насадкою і визначенням параметрів, що впливають на швидкість переходу насадки з одного режиму в інший.Industrial implementation of the stabilization method of the gas-liquid layer can significantly expand the field of use of foaming apparatus and opens up new opportunities for intensifying technological processes with the simultaneous creation of low-waste technologies. The article establishes the basic parameters influencing the hydrodynamics of foam apparatus, considers the basic constructions and operating modes of foam apparatus. The connection of hydrodynamic parameters is revealed. The hydrodynamic laws of the foam layer are considered. The indicated factors affecting the process of mass transfer, both in the gas and in the liquid phases. The conducted analysis of a number of studies showed that the perspective direction of intensification of the mass transfer process is the development of apparatuses with a three-phase fluidized bed of an irrigated nozzle of complex forms with mesh materials

    Occupancy maps of 208 chromatin-associated proteins in one human cell type

    Get PDF
    Transcription factors are DNA-binding proteins that have key roles in gene regulation. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP–seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium

    Exposure assessment of process-related contaminants in food by biomarker monitoring

    Get PDF
    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment
    corecore