884 research outputs found

    Phonological characteristics of the lexicon at 2;0 years predict language outcomes at 3;6 years

    Get PDF
    Poster session 3 - Early speech production: no. 7Toddlers’ first words are of higher mean phonological neighborhood density (ND) than words learned later. The words of children with delayed lexical development are of significantly higher mean ND than those of typically developing children. A relationship between a higher mean ND value at 2;0 years and expressive language skills at 3;6 years may indicate that early word processing difficulties inhibit ongoing development ...postprin

    A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments

    Get PDF
    The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS

    Variable Incidence of Spiroplasma Infections in Natural Populations of Drosophila Species

    Get PDF
    Spiroplasma is widespread as a heritable bacterial symbiont in insects and some other invertebrates, in which it sometimes acts as a male-killer and causes female-biased sex ratios in hosts. Besides Wolbachia, it is the only heritable bacterium known from Drosophila, having been found in 16 of over 200 Drosophila species screened, based on samples of one or few individuals per species. To assess the extent to which Spiroplasma infection varies within and among species of Drosophila, intensive sampling consisting of 50–281 individuals per species was conducted for natural populations of 19 Drosophila species. Infection rates varied among species and among populations of the same species, and 12 of 19 species tested negative for all individuals. Spiroplasma infection never was fixed, and the highest infection rates were 60% in certain populations of D. hydei and 85% in certain populations of D. mojavensis. In infected species, infection rates were similar for males and females, indicating that these Spiroplasma infections do not confer a strong male-killing effect. These findings suggest that Spiroplasma has other effects on hosts that allow it to persist, and that environmental or host variation affects transmission or persistence leading to differences among populations in infection frequencies

    Bacterial microevolution and the Pangenome

    Get PDF
    The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history

    Origin of an Alternative Genetic Code in the Extremely Small and GC–Rich Genome of a Bacterial Symbiont

    Get PDF
    The genetic code relates nucleotide sequence to amino acid sequence and is shared across all organisms, with the rare exceptions of lineages in which one or a few codons have acquired novel assignments. Recoding of UGA from stop to tryptophan has evolved independently in certain reduced bacterial genomes, including those of the mycoplasmas and some mitochondria. Small genomes typically exhibit low guanine plus cytosine (GC) content, and this bias in base composition has been proposed to drive UGA Stop to Tryptophan (Stopβ†’Trp) recoding. Using a combination of genome sequencing and high-throughput proteomics, we show that an Ξ±-Proteobacterial symbiont of cicadas has the unprecedented combination of an extremely small genome (144 kb), a GC–biased base composition (58.4%), and a coding reassignment of UGA Stopβ†’Trp. Although it is not clear why this tiny genome lacks the low GC content typical of other small bacterial genomes, these observations support a role of genome reduction rather than base composition as a driver of codon reassignment

    Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis glycines

    Get PDF
    Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded molecular resources for many aphid species, including the whole genome sequencing of the pea aphid, Acrythosiphon pisum. However, the invasive soybean aphid, Aphis glycines, lacks in any significant molecular resources.Two next-generation sequencing technologies (Roche-454 and Illumina GA-II) were used in a combined approach to develop both transcriptomic and genomic resources, including expressed genes and molecular markers. Over 278 million bp were sequenced among the two methods, resulting in 19,293 transcripts and 56,688 genomic sequences. From this data set, 635 SNPs and 1,382 microsatellite markers were identified. For each sequencing method, different soybean aphid biotypes were used which revealed potential biotype specific markers. In addition, we uncovered 39,822 bp of sequence that were related to the obligatory endosymbiont, Buchnera aphidicola, as well as sequences that suggest the presence of Hamiltonella defensa, a facultative endosymbiont.Molecular resources for an invasive, non-model aphid species were generated. Additionally, the power of next-generation sequencing to uncover endosymbionts was demonstrated. The resources presented here will complement ongoing molecular studies within the Aphididae, including the pea aphid whole genome, lead to better understanding of aphid adaptation and evolution, and help provide novel targets for soybean aphid control

    Mutation Detection with Next-Generation Resequencing through a Mediator Genome

    Get PDF
    The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome of relative organisms as mediators for comparing WT and mutant bacteria. Under this framework, both mutant and WT genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available reference genomes

    Aphids acquired symbiotic genes via lateral gene transfer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aphids possess bacteriocytes, which are cells specifically differentiated to harbour the obligate mutualist <it>Buchnera aphidicola </it>(γ-Proteobacteria). <it>Buchnera </it>has lost many of the genes that appear to be essential for bacterial life. From the bacteriocyte of the pea aphid <it>Acyrthosiphon pisum</it>, we previously identified two clusters of expressed sequence tags that display similarity only to bacterial genes. Southern blot analysis demonstrated that they are encoded in the aphid genome. In this study, in order to assess the possibility of lateral gene transfer, we determined the full-length sequences of these transcripts, and performed detailed structural and phylogenetic analyses. We further examined their expression levels in the bacteriocyte using real-time quantitative RT-PCR.</p> <p>Results</p> <p>Sequence similarity searches demonstrated that these fully sequenced transcripts are significantly similar to the bacterial genes <it>ldcA </it>(product, LD-carboxypeptidase) and <it>rlpA </it>(product, rare lipoprotein A), respectively. <it>Buchnera </it>lacks these genes, whereas many other bacteria, including <it>Escherichia coli</it>, a close relative of <it>Buchnera</it>, possess both <it>ldcA </it>and <it>rlpA</it>. Molecular phylogenetic analysis clearly demonstrated that the aphid <it>ldcA </it>was derived from a rickettsial bacterium closely related to the extant <it>Wolbachia </it>spp. (α-Proteobacteria, Rickettsiales), which are intracellular symbionts of various lineages of arthropods. The evolutionary origin of <it>rlpA </it>was not fully resolved, but it was clearly demonstrated that its double-ψ β-barrel domain is of bacterial origin. Real-time quantitative RT-PCR demonstrated that <it>ldcA </it>and <it>rlpA </it>are expressed 11.6 and 154-fold higher in the bacteriocyte than in the whole body, respectively. LdcA is an enzyme required for recycling murein (peptidoglycan), which is a component of the bacterial cell wall. As <it>Buchnera </it>possesses a cell wall composed of murein but lacks <it>ldcA</it>, a high level of expression of the aphid <it>ldcA </it>in the bacteriocyte may be essential to maintain <it>Buchnera</it>. Although the function of RlpA is not well known, conspicuous up-regulation of the aphid <it>rlpA </it>in the bacteriocyte implies that this gene is also essential for <it>Buchnera</it>.</p> <p>Conclusion</p> <p>In this study, we obtained several lines of evidence indicating that aphids acquired genes from bacteria via lateral gene transfer and that these genes are used to maintain the obligately mutualistic bacterium, <it>Buchnera</it>.</p

    Selection against Spurious Promoter Motifs Correlates with Translational Efficiency across Bacteria

    Get PDF
    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the βˆ’10 promoter motifs that bind the Οƒ70 subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of βˆ’10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, βˆ’10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also confirms previous results indicating that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria
    • …
    corecore