1,213 research outputs found

    Dynamic response of buried heterostructure and stripe geometry λ/4 DFB semiconductor lasers

    Get PDF
    A comparison between different lateral confinement structures in DFB laser is analyzed with identical material parameters and structure in transverse and longitudinal directions. Results show that stripe geometry DFB lasers offer better dynamic response than buried heterostructure DFB lasers.published_or_final_versio

    Ultraviolet Lasing Characteristics of ZnS Microbelt Lasers

    Get PDF
    published_or_final_versio

    A proteomics study of rheumatoid arthritis patients on etanercept identifies putative biomarkers associated with clinical outcome measures

    Get PDF
    \ua9 The Author(s) 2023. Objectives: Biologic DMARDs (bDMARDs) are widely used in patients with RA, but response to bDMARDs is heterogeneous. The objective of this work was to identify pretreatment proteomic biomarkers associated with RA clinical outcome measures in patients starting bDMARDs. Methods: Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) was used to generate spectral maps of sera from patients with RA before and after 3 months of treatment with the bDMARD etanercept. Protein levels were regressed against RA clinical outcome measures, i.e. 28-joint DAS (DAS28) and its subcomponents and DAS28 <2.6 (i.e. remission). The proteins with the strongest evidence for association were analysed in an independent, replication dataset. Finally, subnetwork analysis was carried out using the Disease Module Detection algorithm and biological plausibility of identified proteins was assessed by enrichment analysis. Results: A total of 180 patients with RA were included in the discovery dataset and 58 in the validation dataset from a UK-based prospective multicentre study. Ten individual proteins were found to be significantly associated with RA clinical outcome measures. The association of T-complex protein 1 subunit g with DAS28 remission was replicated in an independent cohort. Subnetwork analysis of the 10 proteins from the regression analysis identified the ontological theme, with the strongest associations being with acute phase and acute inflammatory responses. Conclusion: This longitudinal study of 180 patients with RA commencing etanercept has identified several putative protein biomarkers of treatment response to this drug, one of which was replicated in an independent cohort

    Deep Sequencing of Small RNAs in Tomato for Virus and Viroid Identification and Strain Differentiation

    Get PDF
    Small RNAs (sRNA), including microRNAs (miRNA) and small interfering RNAs (siRNA), are produced abundantly in plants and animals and function in regulating gene expression or in defense against virus or viroid infection. Analysis of siRNA profiles upon virus infection in plant may allow for virus identification, strain differentiation, and de novo assembly of virus genomes. In the present study, four suspected virus-infected tomato samples collected in the U.S. and Mexico were used for sRNA library construction and deep sequencing. Each library generated between 5–7 million sRNA reads, of which more than 90% were from the tomato genome. Upon in-silico subtraction of the tomato sRNAs, the remaining highly enriched, virus-like siRNA pools were assembled with or without reference virus or viroid genomes. A complete genome was assembled for Potato spindle tuber viroid (PSTVd) using siRNA alone. In addition, a near complete virus genome (98%) also was assembled for Pepino mosaic virus (PepMV). A common mixed infection of two strains of PepMV (EU and US1), which shared 82% of genome nucleotide sequence identity, also could be differentially assembled into their respective genomes. Using de novo assembly, a novel potyvirus with less than 60% overall genome nucleotide sequence identity to other known viruses was discovered and its full genome sequence obtained. Taken together, these data suggest that the sRNA deep sequencing technology will likely become an efficient and powerful generic tool for virus identification in plants and animals

    Antimetastatic Effects of Norcantharidin on Hepatocellular Carcinoma by Transcriptional Inhibition of MMP-9 through Modulation of NF-kB Activity

    Get PDF
    The rate of morbidity and mortality of hepatocellular carcinoma (HCC) in Taiwan has not lessened because of difficulty in treating tumor metastasis. Norcantharidin (NCTD) is currently used as an anticancer drug for hepatoma, breast cancer, and colorectal adenocarcinoma. NCTD possesses various biological anticancer activities, including apoptosis. However, detailed effects and molecular mechanisms of NCTD on metastasis are unclear. Thus, HCC cells were subjected to treatment with NCTD and then analyzed to determine the effects of NCTD on cell metastasis.Modified Boyden chamber assays revealed that NCTD treatment inhibited cell migration and invasion capacities of HCC cells substantially. Results of zymography and western blotting showed that activities and protein levels of matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (u-PA) were inhibited by NCTD. Western blot analysis showed that NCTD inhibits phosphorylation of ERK1/2. Testing of mRNA level, quantitative real-time PCR, and promoter assays evaluated the inhibitory effects of NCTD on MMP-9 and u-PA expression in HCC cells. The chromatin immunoprecipitation (ChIP) assay for analyzing the genomic DNA sequences bound to these proteins was reactive to the transcription protein nuclear factor (NF)-kappaB, which was inhibited by NCTD. The expression of NF-kappa B was measured by western blot analysis, which revealed decreased nuclear-factor DNA-binding activity after NCTD treatment.NCTD inhibited MMP-9 and u-PA expression through the phosphorylation of ERK1/2 and NF-kappaB signaling pathway which serves as a powerful chemopreventive agent in HCC cell metastasis

    Random Lasing Action from Randomly Assembled ZnS Nanosheets

    Get PDF
    Lasing characteristics of randomly assembled ZnS nanosheets are studied at room temperature. Under 266-nm optical excitation, sharp lasing peaks emitted at around 332 nm with a linewidth less than 0.4 nm are observed in all directions. In addition, the dependence of lasing threshold intensity with the excitation area is shown in good agreement with the random laser theory. Hence, it is verified that the lasing characteristics of randomly assembled ZnS nanosheets are attributed to coherent random lasing action

    Exploiting inflammation for therapeutic gain in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy associated with <5% 5-year survival, in which standard chemotherapeutics have limited benefit. The disease is associated with significant intra- and peritumoral inflammation and failure of protective immunosurveillance. Indeed, inflammatory signals are implicated in both tumour initiation and tumour progression. The major pathways regulating PDAC-associated inflammation are now being explored. Activation of leukocytes, and upregulation of cytokine and chemokine signalling pathways, both have been shown to modulate PDAC progression. Therefore, targeting inflammatory pathways may be of benefit as part of a multi-target approach to PDAC therapy. This review explores the pathways known to modulate inflammation at different stages of tumour development, drawing conclusions on their potential as therapeutic targets in PDAC

    CTLA4CT60 gene polymorphism is not associated with differential susceptibility to pemphigus foliaceus

    Get PDF
    Pemphigus foliaceus is an organ-specific autoimmune disease characterized by autoantibodies against the extracellular region of desmoglein 1, a protein that mediates intercellular adhesion in desmosomes. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a key negative regulator of the T cell immune response, playing an important role in T cell homeostasis and maintenance of peripheral tolerance. Polymorphisms in the CTLA4 gene have been associated with autoimmune diseases and the functional CT60 single nucleotide polymorphism (rs3087243, also named 6230G > A) has been proposed to be a casual variant in several of these diseases. The aim of this study was to ascertain whether this polymorphism is associated with inter-individual variation in susceptibility to pemphigus foliaceus. The population sample in this case-control association study comprised 248 patient and 367 controls. We did not found a significant association of pemphigus foliaceus with the CT60 variants. We conclude that the CTLA4CT60 polymorphism is not an important factor for pemphigus foliaceus pathogenesis in the population analyzed
    corecore