46 research outputs found

    Publication trends in the medical informatics literature: 20 years of "Medical Informatics" in MeSH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to identify publication output, and research areas, as well as descriptively and quantitatively characterize the field of medical informatics through publication trend analysis over a twenty year period (1987–2006).</p> <p>Methods</p> <p>A bibliometric analysis of medical informatics citations indexed in Medline was performed using publication trends, journal frequency, impact factors, MeSH term frequencies and characteristics of citations.</p> <p>Results</p> <p>There were 77,023 medical informatics articles published during this 20 year period in 4,644 unique journals. The average annual article publication growth rate was 12%. The 50 identified medical informatics MeSH terms are rarely assigned together to the same document and are almost exclusively paired with a non-medical informatics MeSH term, suggesting a strong interdisciplinary trend. Trends in citations, journals, and MeSH categories of medical informatics output for the 20-year period are summarized. Average impact factor scores and weighted average impact factor scores increased over the 20-year period with two notable growth periods.</p> <p>Conclusion</p> <p>There is a steadily growing presence and increasing visibility of medical informatics literature over the years. Patterns in research output that seem to characterize the historic trends and current components of the field of medical informatics suggest it may be a maturing discipline, and highlight specific journals in which the medical informatics literature appears most frequently, including general medical journals as well as informatics-specific journals.</p

    Dealing with heterogeneity of treatment effects: is the literature up to the challenge?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some patients will experience more or less benefit from treatment than the averages reported from clinical trials; such variation in therapeutic outcome is termed heterogeneity of treatment effects (HTE). Identifying HTE is necessary to individualize treatment. The degree to which heterogeneity is sought and analyzed correctly in the general medical literature is unknown. We undertook this literature sample to track the use of HTE analyses over time, examine the appropriateness of the statistical methods used, and explore the predictors of such analyses.</p> <p>Methods</p> <p>Articles were selected through a probability sample of randomized controlled trials (RCTs) published in <it>Annals of Internal Medicine</it>, <it>BMJ</it>, <it>JAMA</it>, <it>The Lancet</it>, and <it>NEJM </it>during odd numbered months of 1994, 1999, and 2004. RCTs were independently reviewed and coded by two abstractors, with adjudication by a third. Studies were classified as reporting: (1) HTE analysis, utilizing a formal test for heterogeneity or treatment-by-covariate interaction, (2) subgroup analysis only, involving no formal test for heterogeneity or interaction; or (3) neither. Chi-square tests and multiple logistic regression were used to identify variables associated with HTE reporting.</p> <p>Results</p> <p>319 studies were included. Ninety-two (29%) reported HTE analysis; another 88 (28%) reported subgroup analysis only, without examining HTE formally. Major covariates examined included individual risk factors associated with prognosis, responsiveness to treatment, or vulnerability to adverse effects of treatment (56%); gender (30%); age (29%); study site or center (29%); and race/ethnicity (7%). Journal of publication and sample size were significant independent predictors of HTE analysis (p < 0.05 and p < 0.001, respectively).</p> <p>Conclusion</p> <p>HTE is frequently ignored or incorrectly analyzed. An iterative process of exploratory analysis followed by confirmatory HTE analysis will generate the data needed to facilitate an individualized approach to evidence-based medicine.</p

    Postnatal Changes in the Expression Pattern of the Imprinted Signalling Protein XLαs Underlie the Changing Phenotype of Deficient Mice

    Get PDF
    The alternatively spliced trimeric G-protein subunit XLαs, which is involved in cAMP signalling, is encoded by the Gnasxl transcript of the imprinted Gnas locus. XLαs deficient mice show neonatal feeding problems, leanness, inertia and a high mortality rate. Mutants that survive to weaning age develop into healthy and fertile adults, which remain lean despite elevated food intake. The adult metabolic phenotype can be attributed to increased energy expenditure, which appears to be caused by elevated sympathetic nervous system activity. To better understand the changing phenotype of Gnasxl deficient mice, we compared XLαs expression in neonatal versus adult tissues, analysed its co-localisation with neural markers and characterised changes in the nutrient-sensing mTOR1-S6K pathway in the hypothalamus. Using a newly generated conditional Gnasxl lacZ gene trap line and immunohistochemistry we identified various types of muscle, including smooth muscle cells of blood vessels, as the major peripheral sites of expression in neonates. Expression in all muscle tissues was silenced in adults. While Gnasxl expression in the central nervous system was also developmentally silenced in some midbrain nuclei, it was upregulated in the preoptic area, the medial amygdala, several hypothalamic nuclei (e.g. arcuate, dorsomedial, lateral and paraventricular nuclei) and the nucleus of the solitary tract. Furthermore, expression was detected in the ventral medulla as well as in motoneurons and a subset of sympathetic preganglionic neurons of the spinal cord. In the arcuate nucleus of Gnasxl-deficient mice we found reduced activity of the nutrient sensing mTOR1-S6K signalling pathway, which concurs with their metabolic status. The expression in these brain regions and the hypermetabolic phenotype of adult Gnasxl-deficient mice imply an inhibitory function of XLαs in energy expenditure and sympathetic outflow. By contrast, the neonatal phenotype of mutant mice appears to be due to a transient role of XLαs in muscle tissues

    How patients understand depression associated with chronic physical disease - A systematic review

    Get PDF
    Background: Clinicians are encouraged to screen people with chronic physical illness for depression. Screening alone may not improve outcomes, especially if the process is incompatible with patient beliefs. The aim of this research is to understand peoples beliefs about depression, particularly in the presence of chronic physical disease. Methods: A mixed method systematic review involving a thematic analysis of qualitative studies and quantitative studies of beliefs held by people with current depressive symptoms. MEDLINE, EMBASE, PSYCHINFO, CINAHL, BIOSIS, Web of Science, The Cochrane Library, UKCRN portfolio, National Research Register Archive, Clinicaltrials.gov and OpenSIGLE were searched from database inception to 31st December 2010. A narrative synthesis of qualitative and quantitative data, based initially upon illness representations and extended to include other themes not compatible with that framework. Results: A range of clinically relevant beliefs was identified from 65 studies including the difficulty in labeling depression, complex causal factors instead of the biological model, the roles of different treatments and negative views about the consequences of depression. We found other important themes less related to ideas about illness: the existence of a self-sustaining depression spiral; depression as an existential state; the ambiguous status of suicidal thinking; and the role of stigma and blame in depression. Conclusions: Approaches to detection of depression in physical illness need to be receptive to the range of beliefs held by patients. Patient beliefs have implications for engagement with depression screening

    Kuhnian revolutions in neuroscience: the role of tool development.

    Get PDF
    The terms "paradigm" and "paradigm shift" originated in "The Structure of Scientific Revolutions" by Thomas Kuhn. A paradigm can be defined as the generally accepted concepts and practices of a field, and a paradigm shift its replacement in a scientific revolution. A paradigm shift results from a crisis caused by anomalies in a paradigm that reduce its usefulness to a field. Claims of paradigm shifts and revolutions are made frequently in the neurosciences. In this article I will consider neuroscience paradigms, and the claim that new tools and techniques rather than crises have driven paradigm shifts. I will argue that tool development has played a minor role in neuroscience revolutions.The work received no fundin
    corecore