148 research outputs found

    Healthcare costs in women with metastatic breast cancer receiving chemotherapy as their principal treatment modality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The economic costs of treating patients with metastatic breast cancer have been examined in several studies, but available estimates of economic burden are at least a decade old. In this study, we characterize healthcare utilization and costs in the US among women with metastatic breast cancer receiving chemotherapy as their principal treatment modality.</p> <p>Methods</p> <p>Using a large private health insurance claims database (2000-2006), we identified all women initiating chemotherapy for metastatic breast cancer with no evidence of receipt of concomitant or subsequent hormonal therapy, or receipt of trastuzumab at anytime. Healthcare utilization and costs (inpatient, outpatient, medication) were estimated on a cumulative basis from date of chemotherapy initiation ("index date") to date of disenrollment from the health plan or the end of the study period, whichever occurred first. Study measures were cumulated over time using the Kaplan-Meier Sample Average (KMSA) method; 95% CIs were generated using nonparametric bootstrapping. Findings also were examined among the subgroup of patients with uncensored data.</p> <p>Results</p> <p>The study population consisted of 1444 women; mean (SD) age was 59.1 (12.1) years. Over a mean follow-up of 532 days (range: 3 to 2412), study subjects averaged 1.7 hospital admissions, 10.7 inpatient days, and 83.6 physician office and hospital outpatient visits. Mean (95% CI) cumulative total healthcare costs were 128,556(128,556 (118,409, $137,644) per patient. Outpatient services accounted for 29% of total costs, followed by medication other than chemotherapy (26%), chemotherapy (25%), and inpatient care (20%).</p> <p>Conclusions</p> <p>Healthcare costs-especially in the outpatient setting--are substantial among women with metastatic breast cancer for whom treatment options other than chemotherapy are limited.</p

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    Dose-Levels and First Signs of Efficacy in Contemporary Oncology Phase 1 Clinical Trials

    Get PDF
    PURPOSE: Phase 1 trials play a crucial role in oncology by translating laboratory science into efficient therapies. Molecular targeted agents (MTA) differ from traditional cytotoxics in terms of both efficacy and toxicity profiles. Recent reports suggest that higher doses are not essential to produce the optimal anti-tumor effect. This study aimed to assess if MTA could achieve clinical benefit at much lower dose than traditional cytotoxics in dose seeking phase 1 trials. PATIENTS AND METHODS: We reviewed 317 recent phase 1 oncology trials reported in the literature between January 1997 and January 2009. First sign of efficacy, maximum tolerated dose (MTD) and their associated dose level were recorded in each trial. RESULTS: Trials investigating conventional cytotoxics alone, MTA alone and combination of both represented respectively 63.0% (201/317), 23.3% (74/317) and 13.7% (42/317) of all trials. The MTD was reached in 65.9% (209/317) of all trials and was mostly observed at the fifth dose level. First sign of efficacy was less frequently observed at the first three dose-levels for MTA as compared to conventional cytotoxics or combinations regimens (48.3% versus 63.2% and 61.3%). Sign of efficacy was observed in the same proportion whatever the treatment type (73-82%). MTD was less frequently established in trials investigating MTA alone (51.3%) or combinations (42.8%) as compared to conventional cytotoxic agents (75.6%). CONCLUSION: First sign of efficacy was less frequently reported at the early dose-levels and MTD was less frequently reached in trials investigating molecular targeted therapy alone. Similar proportion of trials reported clinical benefit

    Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii

    Get PDF
    Toepel J, Albaum S, Arvidsson S, et al. Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii. BMC Genomics. 2011;12(1): 579.ABSTRACT: BACKGROUND: Chlamydomonas reinhardtii is widely accepted as a model organism regarding photosynthesis, circadian rhythm, cell mobility, phototaxis, and biotechnology. The complete annotation of the genome allows transcriptomic studies, however a new microarray platform was needed. Based on the completed annotation of Chlamydomonas reinhardtii a new microarray on an Agilent platform was designed using an extended JGI 3.1 genome data set which included 15000 transcript models. RESULTS: In total 44000 probes were determined (3 independent probes per transcript model) covering 93% of the transcriptome. Alignment studies with the recently published AUGUSTUS 10.2 annotation confirmed 11000 transcript models resulting in a very good coverage of 70% of the transcriptome (17000). Following the estimation of 10000 predicted genes in Chlamydomonas reinhardtii our new microarray, nevertheless, covers the expected genome by 90-95%. CONCLUSIONS: To demonstrate the capabilities of the new microarray, we analyzed transcript levels for cultures grown under nitrogen as well as sulfate limitation, and compared the results with recently published microarray and RNA-seq data. We could thereby confirm previous results derived from data on nutrient-starvation induced gene expression of a group of genes related to protein transport and adaptation of the metabolism as well as genes related to efficient light harvesting, light energy distribution and photosynthetic electron transport

    Comparison of Peptide Array Substrate Phosphorylation of c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8

    Get PDF
    Kinases are pivotal regulators of cellular physiology. The human genome contains more than 500 putative kinases, which exert their action via the phosphorylation of specific substrates. The determinants of this specificity are still only partly understood and as a consequence it is difficult to predict kinase substrate preferences from the primary structure, hampering the understanding of kinase function in physiology and prompting the development of technologies that allow easy assessment of kinase substrate consensus sequences. Hence, we decided to explore the usefulness of phosphorylation of peptide arrays comprising of 1176 different peptide substrates with recombinant kinases for determining kinase substrate preferences, based on the contribution of individual amino acids to total array phosphorylation. Employing this technology, we were able to determine the consensus peptide sequences for substrates of both c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8, two highly homologous kinases with distinct signalling roles in cellular physiology. The results show that although consensus sequences for these two kinases identified through our analysis share important chemical similarities, there is still some sequence specificity that could explain the different biological action of the two enzymes. Thus peptide arrays are a useful instrument for deducing substrate consensus sequences and highly homologous kinases can differ in their requirement for phosphorylation events

    Early Evolution of Ionotropic GABA Receptors and Selective Regimes Acting on the Mammalian-Specific Theta and Epsilon Subunits

    Get PDF
    BACKGROUND: The amino acid neurotransmitter GABA is abundant in the central nervous system (CNS) of both invertebrates and vertebrates. Receptors of this neurotransmitter play a key role in important processes such as learning and memory. Yet, little is known about the mode and tempo of evolution of the receptors of this neurotransmitter. Here, we investigate the phylogenetic relationships of GABA receptor subunits across the chordates and detail their mode of evolution among mammals. PRINCIPAL FINDINGS: Our analyses support two major monophyletic clades: one clade containing GABA(A) receptor alpha, gamma, and epsilon subunits, and another one containing GABA(A) receptor rho, beta, delta, theta, and pi subunits. The presence of GABA receptor subunits from each of the major clades in the Ciona intestinalis genome suggests that these ancestral duplication events occurred before the divergence of urochordates. However, while gene divergence proceeded at similar rates on most receptor subunits, we show that the mammalian-specific subunits theta and epsilon experienced an episode of positive selection and of relaxed constraints, respectively, after the duplication event. Sites putatively under positive selection are placed on a three-dimensional model obtained by homology-modeling. CONCLUSIONS: Our results suggest an early divergence of the GABA receptor subunits, before the split from urochordates. We show that functional changes occurred in the lineages leading to the mammalian-specific subunit theta, and we identify the amino acid sites putatively responsible for the functional divergence. We discuss potential consequences for the evolution of mammals and of their CNS

    Mining Predicted Essential Genes of Brugia malayi for Nematode Drug Targets

    Get PDF
    We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression
    corecore