224 research outputs found

    Non-perturbative moduli superpotential with positive exponents

    Get PDF
    We study non-perturbative moduli superpotentials with positive exponents, i.e. the form like AeaTAe^{aT} with a positive constant aa and the modulus TT. These effects can be generated, e.g., by D-branes which have negative RR charge of lower dimensional D-brane. The scalar potentials including such terms have a quite rich structure. There are several local minima with different potential energies and a high barrier, whose height is of O(Mp4){\cal O}(M_p^4). We discuss their implications from the viewpoints of cosmology and particle phenomenology, e.g. the realization of inflation models, avoiding the overshooting problem. This type of potentials would be useful to realize the inflation and low-energy supersymmetry breaking.Comment: 13 pages, 4 figures, v2: reference adde

    A straightforward preparation of chiral 5-(aminomethyl)oxazole derivatives from α-amino esters and α-lithiated isocyanides

    Get PDF
    An efficient and general preparation of several chiral N-protected 5- (aminomethyl)oxazoles has been accomplished by treatment of N-protected α- amino esters with α-lithiated isocyanides, obtained by metalation of methyl and benzyl isocyanides with BuLi or of ethyl isocyanide with lithium diisopropylamide

    Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914-like binary black holes

    Get PDF
    Pre-DECIGO consists of three spacecraft arranged in an equilateral triangle with 100km arm lengths orbiting 2000km above the surface of the earth. It is hoped that the launch date will be in the late 2020s. Pre-DECIGO has one clear target: binary black holes (BBHs) like GW150914 and GW151226. Pre-DECIGO can detect 30M30M\sim 30M_\odot-30M_\odot BBH mergers up to redshift z30z\sim 30. The cumulative event rate is 1.8×105events yr1\sim 1.8\times 10^{5}\,{\rm events~yr^{-1}} in the Pop III origin model of BBHs like GW150914, and it saturates at z10z\sim 10, while in the primordial BBH (PBBH) model, the cumulative event rate is 3×104events yr1 \sim 3\times 10^{4}\,{\rm events~ yr^{-1}} at z=30z=30 even if only 0.1%0.1\% of the dark matter consists of PBHs, and it is still increasing at z=30z=30. In the Pop I/II model of BBHs, the cumulative event rate is (310)×105events yr1(3-10)\times10^{5}\,{\rm events~ yr^{-1}} and it saturates at z6z \sim 6. We present the requirements on orbit accuracy, drag free techniques, laser power, frequency stability, and interferometer test mass. For BBHs like GW150914 at 1Gpc, SNR90\sim 90 is achieved with the definition of Pre-DECIGO in the 0.011000.01-100Hz band. Pre-DECIGO can measure the mass spectrum and the zz-dependence of the merger rate to distinguish various models of BBHs like GW150914. Pre-DECIGO can also predict the direction of BBHs at z=0.1z=0.1 with an accuracy of 0.3deg2\sim 0.3\,{\rm deg}^2 and a merging time accuracy of 1\sim 1s at about a day before the merger so that ground-based GW detectors further developed at that time as well as electromagnetic follow-up observations can prepare for the detection of merger in advance. For intermediate mass BBHs at a large redshift z>10z > 10, the QNM frequency after the merger can be within the Pre-DECIGO band so that the ringing tail can also be detectable to confirm the Einstein theory of general relativity with SNR35\sim 35. [abridged]Comment: 17 pages, 10 figures, added some references, modifications to match the published version in PTE

    Prevalence and Intra-Family Phylogenetic Divergence of Burkholderiaceae-Related Endobacteria Associated with Species of Mortierella.

    Get PDF
    Endofungal bacteria are widespread within the phylum Mucoromycota, and these include Burkholderiaceae-related endobacteria (BRE). However. the prevalence of BRE in Mortierellomycotinan fungi and their phylogenetic divergence remain unclear. Therefore, we examined the prevalence of BRE in diverse species of Mortierella. We surveyed 238 isolates of Mortierella spp. mainly obtained in Japan that were phylogenetically classified into 59 species. BRE were found in 53 isolates consisting of 22 species of Mortierella. Among them, 20 species of Mortierella were newly reported as the fungal hosts of BRE. BRE in a Glomeribacter-illycoavidus Glade in the family Burkholderiaceae were separated phylogenetically into three groups. These groups consisted of a group containing Mycoavidus cysteinexigens, which is known to be associated with M. elongata, and two other newly distinguishable groups. Our results demonstrated that BRE were harbored by many species of Mortierella and those that associated with isolates of Mortierella spp. were more phylogenetically divergent than previously reported

    Absolute X-ray energy measurement using a high-accuracy angle encoder

    Get PDF
    This paper presents an absolute X-ray photon energy measurement method that uses a Bond diffractometer. The proposed system enables the prompt and rapid in situ measurement of photon energies over a wide energy range. The diffractometer uses a reference silicon single-crystal plate and a highly accurate angle encoder called SelfA. The performance of the system is evaluated by repeatedly measuring the energy of the first excited state of the potassium-40 nuclide. The excitation energy is determined as 29829.39 (6) eV, and this is one order of magnitude more accurate than the previous measurement. The estimated uncertainty of the photon energy measurement was 0.7 p.p.m. as a standard deviation and the maximum observed deviation was 2 p.p.m

    Gauge Problem in the Gravitational Self-Force II. First Post Newtonian Force under Regge-Wheeler Gauge

    Full text link
    We discuss the gravitational self-force on a particle in a black hole space-time. For a point particle, the full (bare) self-force diverges. It is known that the metric perturbation induced by a particle can be divided into two parts, the direct part (or the S part) and the tail part (or the R part), in the harmonic gauge, and the regularized self-force is derived from the R part which is regular and satisfies the source-free perturbed Einstein equations. In this paper, we consider a gauge transformation from the harmonic gauge to the Regge-Wheeler gauge in which the full metric perturbation can be calculated, and present a method to derive the regularized self-force for a particle in circular orbit around a Schwarzschild black hole in the Regge-Wheeler gauge. As a first application of this method, we then calculate the self-force to first post-Newtonian order. We find the correction to the total mass of the system due to the presence of the particle is correctly reproduced in the force at the Newtonian order.Comment: Revtex4, 43 pages, no figure. Version to be published in PR
    corecore