11 research outputs found

    Remote sensing-based information and insurance for crop in emerging economics in Thailand (in Thai)

    No full text
    The Remote Sensing-based Information and Insurance for Crops in Emerging Economics (RIICE) is a project to find ways of helping Asian countries are faced with a natural disaster. Especially floods and droughts caused by the cooperation of the three organizations, namely International Research Institute (IRRI), SARMAP and Rice Department. By the year 2013-2015 in the area of responsibility of Suphan Buri Rice Research Center. Nakhon Ratchasrima Rice Research Center and the objecttive of the project is to reduce vulnerability of smallholders in rice production through better and cheaper information systems on crop growth which will in turn lead to applications such as micro-insurance schemes. On the long run rice production should have increased, thanks to better weather forecast in drought and flood prone areas and therefore better land management by farmers.In the year 2013 in Nakhon Ratchasima, using satellite COSMO Skymed, type stripmap, resolution 3-meter, width of the image 40x40 kilometers. In Suphanburi, using satellite COSMO Skymed, type scansar resolution of 15 meters, the width of the image 100x100 kilometers. In each field survey was conducted, collectting geographic coordinates, Managing of farmers, Environment and weather of 20 plots in each province. Leaf area index, crop cutting. After the end of the growing season, we survey in the fields if it was paddy field or non-paddy, totally of 100 points with the geographic coordinates to assess the accuracy of a program MapSCAPE Performance in 2013 for satellite imagery. The result of 2013 are, getting 7 imageries from Suphanburi, 11 imageries from Nakhon Ratchasima, They could be classified into cultivated area, flooded areas, The start of the growing season.The precision of the program by using Confusion Matrix computation, we found that the accurancy of the program in Suphanburi is 87.7%āđ‚āļ„āļĢāļ‡āļāļēāļĢ Remote Sensing-based Information and Insurance for Crops in Emerging Economics (RIICE) āđ€āļ›āđ‡āļ™āđ‚āļ„āļĢāļ‡āļāļēāļĢāļŦāļēāđāļ™āļ§āļ—āļēāļ‡āđƒāļ™āļāļēāļĢāļŠāđˆāļ§āļĒāđ€āļŦāļĨāļ·āļ­āļ›āļĢāļ°āđ€āļ—āļĻāļ—āļēāļ‡āđāļ–āļšāđ€āļ­āđ€āļŠāļĩāļĒāļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ›āļĢāļ°āļŠāļšāļāļąāļšāļ›āļąāļāļŦāļēāļ āļąāļĒāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļī āđ‚āļ”āļĒāđ€āļ‰āļžāļēāļ°āļ­āļļāļ—āļāļ āļąāļĒ āđāļĨāļ°āļ āļąāļĒāđāļĨāđ‰āļ‡ āđ‚āļ”āļĒāđ€āļāļīāļ”āļˆāļēāļāļ„āļ§āļēāļĄāļĢāđˆāļ§āļĄāļĄāļ·āļ­āļ‚āļ­āļ‡ 3 āļ­āļ‡āļ„āđŒāļāļĢāļŦāļĨāļąāļ āđ„āļ”āđ‰āđāļāđˆ International Research Institute(IRRI), SARMAP āđāļĨāļ°āļāļĢāļĄāļāļēāļĢāļ‚āđ‰āļēāļ§ āđ‚āļ”āļĒāļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļ›āļĩ 2556-2558 āđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļĢāļąāļšāļœāļīāļ”āļŠāļ­āļšāļ‚āļ­āļ‡āļĻāļđāļ™āļĒāđŒāļ§āļīāļˆāļąāļĒāļ‚āđ‰āļēāļ§āļŠāļļāļžāļĢāļĢāļ“āļšāļļāļĢāļĩ āđāļĨāļ°āļĻāļđāļ™āļĒāđŒāļ§āļīāļˆāļąāļĒāļ‚āđ‰āļēāļ§āļ™āļ„āļĢāļĢāļēāļŠāļŠāļĩāļĄāļē āđ‚āļ”āļĒāļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­ āļĨāļ”āļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡āļ‚āļ­āļ‡āđ€āļāļĐāļ•āļĢāļāļĢāļĢāļēāļĒāļĒāđˆāļ­āļĒāđƒāļ™āļāļēāļĢāļœāļĨāļīāļ•āļ‚āđ‰āļēāļ§āđ‚āļ”āļĒāđƒāļŦāđ‰āđ„āļ”āđ‰āļĢāļąāļšāļ‚āđ‰āļ­āļĄāļđāļĨāļ”āđ‰āļēāļ™āļāļēāļĢāļœāļĨāļīāļ•āļžāļ·āļŠ āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ›āļĨāļđāļāļ‚āđ‰āļēāļ§āļ—āļĩāđˆāļ”āļĩāļāļ§āđˆāļēāđāļĨāļ°āđāļĄāđˆāļ™āļĒāļģ āļ§āļīāļ˜āļĩāļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āļ‡āļēāļ™āļ›āļĩ āļž.āļĻ.2556 āļˆāļąāļ‡āļŦāļ§āļąāļ”āļ™āļ„āļĢāļĢāļēāļŠāļŠāļĩāļĄāļē āđƒāļŠāđ‰āļ āļēāļžāļ–āđˆāļēāļĒāļ”āļēāļ§āđ€āļ—āļĩāļĒāļĄ COSMO Skymed āļ›āļĢāļ°āđ€āļ āļ— stripmap āļ„āļ§āļēāļĄāļĨāļ°āđ€āļ­āļĩāļĒāļ”āļ‚āļ­āļ‡āļ āļēāļž 3 āđ€āļĄāļ•āļĢ āļ„āļ§āļēāļĄāļāļ§āđ‰āļēāļ‡āļ‚āļ­āļ‡āļ āļēāļž 40x40 āļāļīāđ‚āļĨāđ€āļĄāļ•āļĢ āļˆāļąāļ‡āļŦāļ§āļąāļ”āļŠāļļāļžāļĢāļĢāļ“āļšāļļāļĢāļĩ āđƒāļŠāđ‰āļ āļēāļžāļ–āđˆāļēāļĒāļ”āļēāļ§āđ€āļ—āļĩāļĒāļĄ COSMO Skymed āļ›āļĢāļ°āđ€āļ āļ— scansar āļ„āļ§āļēāļĄāļĨāļ°āđ€āļ­āļĩāļĒāļ”āļ‚āļ­āļ‡āļ āļēāļž 15 āđ€āļĄāļ•āļĢ āļ„āļ§āļēāļĄāļāļ§āđ‰āļēāļ‡āļ‚āļ­āļ‡āļ āļēāļž 100x100 āļāļīāđ‚āļĨāđ€āļĄāļ•āļĢ āđƒāļ™āđāļ•āđˆāļĨāļ°āļˆāļąāļ‡āļŦāļ§āļąāļ”āđ„āļ”āđ‰āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļŠāļģāļĢāļ§āļˆ āđ€āļāđ‡āļšāļžāļīāļāļąāļ”āļ—āļēāļ‡āļ āļđāļĄāļīāļĻāļēāļŠāļ•āļĢāđŒ āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāđāļ›āļĨāļ‡āļ‚āļ­āļ‡āđ€āļāļĐāļ•āļĢāļāļĢ āļŠāļ āļēāļžāđāļ§āļ”āļĨāđ‰āļ­āļĄāđāļĨāļ°āļŠāļ āļēāļžāļ­āļēāļāļēāļĻ āļˆāļģāļ™āļ§āļ™ 20 āđāļ›āļĨāļ‡āđƒāļ™āđāļ•āđˆāļĨāļ°āļˆāļąāļ‡āļŦāļ§āļąāļ” āđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļ”āļąāļŠāļ™āļĩāļžāļ·āđ‰āļ™āļ—āļĩāđˆāđƒāļšāļ‚āđ‰āļēāļ§ āļœāļĨāļœāļĨāļīāļ•āļ‚āđ‰āļēāļ§āđƒāļ™āđāļ›āļĨāļ‡āđ€āļāļĐāļ•āļĢāļāļĢ āļŦāļĨāļąāļ‡āļˆāļēāļāļŠāļīāđ‰āļ™āļŠāļļāļ”āļĪāļ”āļđāļ›āļĨāļđāļāļ—āļģāļāļēāļĢāļŠāļģāļĢāļ§āļˆāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ™āļēāļ‚āđ‰āļēāļ§ āđāļĨāļ°āđ„āļĄāđˆāđƒāļŠāđˆāļ™āļēāļ‚āđ‰āļēāļ§ āļˆāļģāļ™āļ§āļ™ 100 āļˆāļļāļ” āļšāļąāļ™āļ—āļķāļāļžāļīāļāļąāļ”āļ—āļēāļ‡āļ āļđāļĄāļīāļĻāļēāļŠāļ•āļĢāđŒ āđ€āļžāļ·āđˆāļ­āļ™āļģāđ„āļ›āļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģāļ‚āļ­āļ‡āđ‚āļ›āđāļāļĢāļĄ MapSCAPE āļœāļĨāļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āļ‡āļēāļ™āđƒāļ™āļ›āļĩ 2556 āđ„āļ”āđ‰āļ āļēāļžāļ–āđˆāļēāļĒāļ”āļēāļ§āđ€āļ—āļĩāļĒāļĄāļ‚āļ­āļ‡āļˆāļąāļ‡āļŦāļ§āļąāļ”āļŠāļļāļžāļĢāļĢāļ“āļšāļļāļĢāļĩ āļˆāļģāļ™āļ§āļ™ 7 āļ āļēāļž āļˆāļąāļ‡āļŦāļ§āļąāļ”āļ™āļ„āļĢāļĢāļēāļŠāļŠāļĩāļĄāļē āļˆāļģāļ™āļ§āļ™ 11 āļ āļēāļž āđ„āļ”āđ‰āļ™āļģāļ āļēāļžāļ–āđˆāļēāļĒāļĄāļēāđāļ›āļĨāđ€āļžāļ·āđˆāļ­āđāļŠāļ”āļ‡āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ›āļĨāļđāļāļ‚āđ‰āļēāļ§ āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ–āļđāļāļ™āđ‰āļģāļ—āđˆāļ§āļĄ āļāļēāļĢāđ€āļĢāļīāđˆāļĄāļĪāļ”āļđāļ›āļĨāļđāļāļ‚āđ‰āļēāļ§āļ‚āļ­āļ‡āļ—āļąāđ‰āļ‡ 2 āļˆāļąāļ‡āļŦāļ§āļąāļ” āđ‚āļ”āļĒāđƒāļŠāđ‰āđ‚āļ›āļĢāđāļāļĢāļĄ MapSCAPE 5.0 āļ›āļĢāļ°āļĄāļ§āļĨāđāļĨāļ°āđāļŠāļ”āļ‡āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ›āļĨāļđāļāļ‚āđ‰āļēāļ§ āļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģāļˆāļēāļāļāļēāļĢāđāļ›āļĨāļ āļēāļžāļ–āđˆāļēāļĒāļ”āļēāļ§āđ€āļ—āļĩāļĒāļĄ āđ‚āļ”āļĒāđƒāļŠāđ‰ Confusion Matrix Computation āļžāļšāļ§āđˆāļēāļāļēāļĢāđāļ›āļĨāļ āļēāļžāļ‚āļ­āļ‡āļˆāļąāļ‡āļŦāļ§āļąāļ”āļŠāļļāļžāļĢāļĢāļ“āļšāļļāļĢāļĩāļĄāļĩāļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģ 87.1

    CO2-response function of radiation use efficiency in rice for climate change scenarios

    Get PDF
    The objective of this work was to evaluate a generalized response function to the atmospheric CO2 concentration [f(CO2)] by the radiation use efficiency (RUE) in rice. Experimental data on RUE at different CO2 concentrations were collected from rice trials performed in several locations around the world. RUE data were then normalized, so that all RUE at current CO2 concentration were equal to 1. The response function was obtained by fitting normalized RUE versus CO2 concentration to a Morgan-Mercer-Flodin (MMF) function, and by using Marquardt's method to estimate the model coefficients. Goodness of fit was measured by the standard deviation of the estimated coefficients, the coefficient of determination (RÂē), and the root mean square error (RMSE). The f(CO2) describes a nonlinear sigmoidal response of RUE in rice, in function of the atmospheric CO2 concentration, which has an ecophysiological background, and, therefore, renders a robust function that can be easily coupled to rice simulation models, besides covering the range of CO2 emissions for the next generation of climate scenarios for the 21st century

    State of ex situ conservation of landrace groups of 25 major crops

    No full text
    Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been compre hensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on aver age, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservatio
    corecore