8,055 research outputs found
Indian Gaming: Issues and Prospects
This article explains the evolution of Indian gaming from economic and social perspectives. Many of the political opportunities and threats to Indian gaming are examined, and current and future issues surrounding Indian gaming are further explored
Drell-Yan, ZZ, W+W- production in SM & ADD model to NLO+PS accuracy at the LHC
In this paper, we present the next-to-leading order QCD corrections for
di-lepton, di-electroweak boson (ZZ, W+W-) production in both the SM and the
ADD model, matched to the HERWIG parton-shower using the aMC@NLO framework. A
selection of results at the 8 TeV LHC, which exhibits deviation from the SM as
a result of the large extra-dimension scenario are presented.Comment: 12 pages, 10 figures, search sensitivity for the 14 TeV LHC
discussed, version to appear in Eur. Phys. J.
Probing emergent QED in quantum spin ice via Raman scattering of phonons: Shallow inelastic scattering and pair production
We present an unconventional mechanism for Raman scattering of phonons, which is based on the linear magnetoelastic coupling present in non-Kramers magnetic ions. This provides a direct coupling of Raman-active phonons to the magnet's quasiparticles. We propose to use this mechanism to probe the emergent magnetic monopoles, electric charges, and photons of the emergent quantum electrodynamics (eQED) of the U(1) quantum spin liquid known as quantum spin ice. Detecting this eQED in candidate rare-earth pyrochlore materials, or indeed signatures of topological magnetic phases more generally, is a challenging task. We show that the Raman scattering cross section of the phonons directly yields relevant information, with the broadening of the phonon linewidth, which we compute, exhibiting a characteristic frequency dependence reflecting the two-particle density of states of the emergent excitations. Remarkably, we find that the Raman linewidth is sensitive to the details of the symmetry fractionalization and hence can reveal information about the projective implementation of symmetry in the quantum spin liquid, thereby providing a diagnostic for a pi-flux phase. The Raman scattering of the phonons thus provides a useful experimental tool to probe the fractionalization in quantum spin liquids that turns out to closely mirror pair production in quantum electrodynamics and the deep inelastic scattering of quantum chromodynamics. Indeed, the difference to the latter is conceptual more than technical: the partons (quarks) emerge from the hadrons at high energies due to asymptotic freedom, while those in eQED arise from fractionalization of the spins at low energies
Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xpLA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization
Probing energy barriers and quantum confined states of buried semiconductor heterostructures with ballistic carrier injection: An experimental study
A three-terminal spectroscopy that probes both subsurface energy barriers and
interband optical transitions in a semiconductor heterostructure is
demonstrated. A metal-base transistor with a unipolar p-type semiconductor
collector embedding InAs/GaAs quantum dots (QDs) is studied. Using
minority/majority carrier injection, ballistic electron emission spectroscopy
and its related hot-carrier scattering spectroscopy measures barrier heights of
a buried AlxGa1-xAs layer in conduction band and valence band respectively, the
band gap of Al0.4Ga0.6As is therefore determined as 2.037 +/- 0.009 eV at 9 K.
Under forward collector bias, interband electroluminescence is induced by the
injection of minority carriers with sub-bandgap kinetic energies. Three
emission peaks from InAs QDs, InAs wetting layer, and GaAs are observed in
concert with minority carrier injection.Comment: 11 pages, 4 figures, submitted to Physical Review
Topological Protection and Quantum Noiseless Subsystems
Encoding and manipulation of quantum information by means of topological
degrees of freedom provides a promising way to achieve natural fault-tolerance
that is built-in at the physical level. We show that this topological approach
to quantum information processing is a particular instance of the notion of
computation in a noiseless quantum subsystem. The latter then provide the most
general conceptual framework for stabilizing quantum information and for
preserving quantum coherence in topological and geometric systems.Comment: 4 Pages LaTeX. Published versio
Prevalence of bacterial vaginosis in females in the reproductive age group in Kadur, Karnataka, India
Background: Bacterial vaginosis, well known as the nonspecific vaginitis is caused by the normal resident flora of the vagina, predominantly by the peroxides producing lactobacillus species, when there is a disparity in their proportion and replaced by Gardinerella vaginalis, Mycoplasm hominis, Mobilunceus species, Bacteroids species, Prevotela species, Fusobacterium species and Porphyromonus species, Peptostreptococcus species.Methods: A cross section study was performed to study the prevalence of bacterial vaginosis in the reproductive age group women and the associated risk factors. The diagnosis of the vaginosis was made from the smear and Amsle’s clinical criteria.Results: Out of 250 patients 112 (44.8%) were diagnosed to have BV, 20-29-year age group had the largest percentage of infection 69 (61.6%). IUCD users 36 (32.14%) are found to be suffering from BV. Vaginal candidiasis, trichomonas vaginalis and atypical cell of unknown significant was seen in 32 (28.5%), 9 (8.03%) and 17 (15.17%) women respectively.Conclusions: A routine high vaginal swab for smear and culture must be performed for every woman presenting with chronic white discharge and itching, to prevent misuse usage of antibiotic. Further studies are needed to study the associated risk factors for BV
A quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors
We describe a new polynomial time quantum algorithm that uses the quantum
fast fourier transform to find eigenvalues and eigenvectors of a Hamiltonian
operator, and that can be applied in cases (commonly found in ab initio physics
and chemistry problems) for which all known classical algorithms require
exponential time. Applications of the algorithm to specific problems are
considered, and we find that classically intractable and interesting problems
from atomic physics may be solved with between 50 and 100 quantum bits.Comment: 10 page
Capacity of nonlinear bosonic systems
We analyze the role of nonlinear Hamiltonians in bosonic channels.
We show that the information capacity as a function of the channel energy is
increased with respect to the corresponding linear case, although only when the
energy used for driving the nonlinearity is not considered as part of the
energetic cost and when dispersive effects are negligible.Comment: 6 pages, 3 figure
- …