69,744 research outputs found

    On uniquely k-determined permutations

    Get PDF
    There are several approaches to study occurrences of consecutive patterns in permutations such as the inclusion-exclusion method, the tree representations of permutations, the spectral approach and others. We propose yet another approach to study occurrences of consecutive patterns in permutations. The approach is based on considering the graph of patterns overlaps, which is a certain subgraph of the de Bruijn graph. While applying our approach, the notion of a uniquely kk-determined permutation appears. We give two criteria for a permutation to be uniquely kk-determined: one in terms of the distance between two consecutive elements in a permutation, and the other one in terms of directed hamiltonian paths in the certain graphs called path-schemes. Moreover, we describe a finite set of prohibitions that gives the set of uniquely kk-determined permutations. Those prohibitions make applying the transfer matrix method possible for determining the number of uniquely kk-determined permutations.Comment: 12 page

    Photon echo quantum RAM integration in quantum computer

    Full text link
    We have analyzed an efficient integration of the multi-qubit echo quantum memory into the quantum computer scheme on the atomic resonant ensembles in quantum electrodynamics cavity. Here, one atomic ensemble with controllable inhomogeneous broadening is used for the quantum memory node and other atomic ensembles characterized by the homogeneous broadening of the resonant line are used as processing nodes. We have found optimal conditions for efficient integration of multi-qubit quantum memory modified for this analyzed physical scheme and we have determined a specified shape of the self temporal modes providing a perfect reversible transfer of the photon qubits between the quantum memory node and arbitrary processing nodes. The obtained results open the way for realization of full-scale solid state quantum computing based on using the efficient multi-qubit quantum memory.Comment: 13 pages, 5 figure

    Klein Topological Field Theories from Group Representations

    Full text link
    We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring
    corecore