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Abstract

Motivated by a new point of view to study occurrences of consecutive patterns in permutations, we introduce the notion of uniquely
k-determined permutations. We give two criteria for a permutation to be uniquely k-determined: one in terms of the distance between
two consecutive elements in a permutation, and the other one in terms of directed hamiltonian paths in the certain graphs called
path-schemes. Moreover, we describe a finite set of prohibitions that gives the set of uniquely k-determined permutations. Those
prohibitions make the application of the transfer matrix method possible for determining the number of uniquely k-determined
permutations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A pattern � is a permutation on {1, 2, . . . , k}. An occurrence of a consecutive pattern � in a permutation � =
�1�2 . . . �n is a word �i�i+1 . . . �i+k−1 that is order-isomorphic to �. For example, the permutation 253164 contains
two occurrences of the pattern 132, namely 253 and 164. In this paper we deal only with consecutive patterns, which
causes omitting the word “consecutive” in defining a pattern to shorten the notation.

There are several approaches in the literature to study the distribution and, in particular, avoidance, of consec-
utive patterns in permutations. For example, direct combinatorial considerations are used in [9]; the method of
inclusion–exclusion is used in [7,10]; the tree representations of permutations are used in [5]; the spectral theory
of integral operators on L2([0, 1]k) is used in [4]. In this paper we suggest yet another approach to study occurrences
of consecutive patterns in permutations. The approach is based on considering the graph of patterns overlaps defined
below, which is a similar to the de Bruijn graph studied broadly in the literature mainly in connection with combina-
torics on words and graph theory. However, we do not intend to study/develop the approach in this paper, rather using
it as a possible motivation for introducing our objects of interest.

Suppose we are interested in the number of occurrences of a pattern � of length k in a permutation � of length n. To
find this number, we scan � from left to right with a “window” of length k, that is, we consider Pi = �i�i+1 . . . �i+k−1
for i = 1, 2, . . . , n − k + 1: if we meet an occurrence of �, we register it. Each Pi forms a pattern of length k, and the
procedure of scanning � gives us a path in the graph Pk of patterns overlaps of order k defined as follows (graphs of
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patterns/permutations overlaps appear in [1,2,8]). The nodes of Pk are all k! k-permutations, and there is an arc from a
node a1a2 . . . ak to a node b1b2 . . . bk if and only if a2a3 . . . ak and b1b2 . . . bk−1 form the same pattern. Thus, for any
n-permutation there is a path in Pk of length n−k+1 corresponding to it. For example, if k=3 then to the permutation
13542 there corresponds the path 123 → 132 → 321 in P3. It is also clear that every path in the graph corresponds to
at least one permutation.

Our approach to study the distribution of a consecutive pattern � of length k among n-permutations is to take Pk and
to consider all paths of length n−k +1 passing through the node � exactly � times, where �=0, 1, . . . , n−k +1. Then
we could count the permutations corresponding to the paths. Similarly, for the “avoidance problems” that attracted
much attention in the literature, we proceed as follows: given a set of patterns of length k to avoid, we remove the
corresponding nodes with the corresponding arcs fromPk , consider all the paths of certain length in the graph obtained,
and then count the permutations of interest.

However, a complication with the approach is that a permutation does not need to be reconstructible uniquely from
the path corresponding to it. For example, the permutation 13542 above has the same path in P3 corresponding to
it as the permutations 23541 and 12543. Thus, different paths in Pk may have different contributions to the number
of permutations with the required properties; in particular, some of the paths in Pk give exactly one permutation
corresponding to them. We call such permutations uniquely k-determined or just k-determined for brevity. The study
of such permutations is the main concern of the paper, and it should be considered as the first step in understanding
how to use our approach to the problems described. Also, in our considerations we assume that all the nodes in Pk are
allowed while dealing with k-determined permutations, that is, we do not prohibit any pattern.

The paper is organized as follows. In Section 2 we study the set of k-determined permutations. In particular, we give
two criteria for a permutation to be k-determined: one in terms of the distance between two consecutive elements in a
permutation, and the other one in terms of directed hamiltonian paths in the certain graphs called path-schemes. We use
the second criteria to establish (rough) upper and lower bounds for the number of k-determined permutations. Moreover,
given an integer k, we describe a finite set of prohibitions that determines the set of k-determined permutations. Those
prohibitions make the application of the transfer matrix method [14, Theorem 4.7.2] possible for determining the
number of k-determined permutations and we discuss this in Section 3. As a corollary of using the method, we get that
the generating function for the number of k-determined permutations is rational. Besides, we show that there are no
crucial permutations in the set of k-determined permutations. (Crucial objects, in the sense defined below, are natural to
study in infinite sets of objects defined by prohibitions; for instance, see [6] for some results in this direction related to
words.) We consider in more details the case k = 3 in Section 3.1. Finally, in Section 4, we state several open problems
for further research.

2. Uniquely k-determined permutations

2.1. Distance between consecutive elements; a criterion on k-determinability

Suppose � = �1�2 . . . �n is a permutation and i < j . The distance d�(�i , �j ) = d�(�j , �i ) between the elements �i

and �j is j − i. For example, d253164(3, 6) = d253164(6, 3) = 2.

Theorem 1 (First criterion on k-determinability). An n-permutation � is k-determined if and only if for each 1�x < n,
the distance d�(x, x + 1)�k − 1.

Proof. Suppose for an n-permutation �, d(x, x + 1)�k for some 1�x < n. This means that x and x + 1 will never be
inside a window of length k while scanning consecutive elements of �. Thus, these elements are incomparable in � in
the sense that switching x and x + 1 in � will lead to another permutation �′ having the same path in Pk as � has. So,
� is not k-determined.

On the other hand, if for each 1�x < n, the distance d�(x, x + 1)�k − 1, then assuming we know where 1 is in �
(which is the case, see below), we can place uniquely 2, then 3, and so on, leading to the fact that � is k-determined.

To complete the proof, suppose that there are two permutations, �1 �= �2, satisfying the element distance condition,
having the same path in Pn, and such that 1 is in position i in �1 and 1 is in position j in �2, i < j . Let X = x1x2 . . . xk

be the pattern formed by the elements in positions from the set Y = {j − k + 1, j − k + 2, . . . , j} in the permutations.
Consider now placing the elements 1, 2, . . ., one-by-one, in �1. Let t, 1� t �j − 1, be the minimum element such that
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Fig. 1. The path-scheme P(6, {2, 4}).

t occupies one of the positions from Y, say s, in �1. Because of the element distance condition, we cannot “jump over”
X while placing two consecutive elements, and thus s < j . We get a contradiction, since because of �1, xs must be
minimal in X while because of �2, xj must be minimal in X. Thus, the position of 1 is uniquely determined and we get
the desired result. �

The following corollary to Theorem 1 is straightforward.

Corollary 2. An n-permutation � is not k-determined if and only if there exists x, 1�x < n, such that d�(x, x + 1)�k.

So, to determine if a given n-permutation is k-determined, all we need to do is to check the distance for n − 1 pairs
of numbers: (1, 2), (2, 3), . . . , (n − 1, n). Also, the language of determined k-permutations is factorial in the sense
that if �1�2 . . . �n is k-determined, then so is the pattern of �i�i+1 . . . �j for any i�j , which is a simple corollary to
Theorem 1. Coming back to the permutation 13542 above and using Corollary 2, we see why this permutation is not
3-determined (k = 3): the distance d13542(2, 3) = 3 = k.

2.2. Directed hamiltonian paths in path-schemes; another criterion on k-determinability

Let V = {1, 2, . . . , n} and M be a subset of V. A path-scheme P(n, M) is a graph G = (V , E), where the edge set E
is {(x, y) | |x − y| ∈ M}. See Fig. 1 for an example of a path-scheme.

Path-schemes, also known as “distance graphs” [3], appear in the literature, for example, in connection with counting
independent sets (see [11]). However, we will be interested in path-schemes having M = {1, 2, . . . , k − 1} for some
k (the number of independent sets for such M in case of n nodes is given by the (n + k)th k-generalized Fibonacci
number). Let Gk,n = P(n, {1, 2, . . . , k − 1}), where k�n. Clearly, Gk,n is a subgraph of Gn,n.

Any permutation � = �1�2 . . . �n determines uniquely a directed hamiltonian path in Gn,n starting with �1, then
going to �2, then to �3 and so on. The reverse is also true: given a directed hamiltonian path in Gn,n we can easily
construct the permutation corresponding to it.

The following theorem is just another formulation of Theorem 1.

Theorem 3 (Second criterion on k-determinability). Let � be the map that sends a k-determined n-permutation �
to the directed hamiltonian path in Gn,n corresponding to �−1. � is a bijection between the set of all k-determined
n-permutations and the set of all directed hamiltonian paths in Gk,n.

Theorem 3 suggests a quick checking of whether an n-permutation � is k-determined or not. One simply needs to
consider n − 1 differences of the adjacent elements in �−1 and check whether at least one of those differences exceeds
k − 1 or not. Moreover, one can find the number of k-determined n-permutations by listing them and checking for each
of them the differences of consecutive elements in the manner described above. Using this approach, one can run a
computer program to get the number of k-determined n-permutations for initial values of k and n, which we record in
Table 1.

It is remarkable that the sequence corresponding to the case k = 3 in Table 1 appears in [13, A003274], where we
learn that the inverses to the 3-determined permutations are called the key permutations and they appear in [12]. Another
sequence appearing in Table 1 is [13, A003274]: 0, 2, 12, 72, 480, 3600, . . . . In our case, this is the number of n-
determined (n+1)-permutations, n�1; in [13], this is the number of (n+1)-permutations that have two predetermined
elements non-adjacent (e.g., for n = 2, the permutations with say 1 and 2 non-adjacent are 132 and 231). It is clear
that both of the last objects are counted by n!(n − 1). Indeed, to create a n-determined (n + 1)-permutation, we take
any permutation (there are n! choices) and extend it to the right by one element making sure that the extension is not
adjacent to the leftmost element of the permutation (there are n − 1 possibilities; here we use Theorem 1). On the
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Table 1
The initial values for the number of k-determined n-permutations

k = 2 1, 2, 2, 2, 2, 2, 2, 2, 2, . . .

k = 3 1, 2, 6, 12, 20, 34, 56, 88, 136, . . .

k = 4 1, 2, 6, 24, 72, 180, 428, 1042, 2512, . . .

k = 5 1, 2, 6, 24, 120, 480, 1632, 5124, 15860, . . .

k = 6 1, 2, 6, 24, 120, 720, 3600, 15600, 61872, . . .

k = 7 1, 2, 6, 24, 120, 720, 5040, 30240, 159840, . . .

k = 8 1, 2, 6, 24, 120, 720, 5040, 40320, 282240, . . .

other hand, to create a “good” permutation appearing in [13], we take any of n! permutations, and insert one of the
predetermined elements into any position not adjacent to the other predetermined element (there are (n − 1) choices).
A bijection between the sets of permutations above is given by the following: suppose a and b are the predetermined
elements in � = �1 . . . �n, and �i = a and �j = b. We build the permutation �′ corresponding to � by setting �′

1 = i,
�′

n = j , and �′
2 . . . �′

n−1 is obtained from � by first removing a and b, and then, inwhat is left, by replacing i by a and j
by b. For example, assuming that 2 and 4 are the determined elements, to 134526 there corresponds 514263 which is
a 5-determined 6-permutation.

Another application of Theorem 3 is finding lower and upper bounds for the number Ak,n of k-determined n-
permutations.

Theorem 4. We have 2((k − 1)!)�n/k� < Ak,n < 2(2(k − 1))n.

Proof. According to Theorem 3, we can estimate the number of directed hamiltonian paths in Gk,n to get the desired
result. This number is two times the number of (non-directed) hamiltonian paths in Gk,n, which is bounded from above
by (2(k − 1))n, since 2(k − 1) is the maximum degree of Gk,n (for n�2k − 1). So, Ak,n < 2(2(k − 1))n.

To see that Ak,n > 2((k − 1)!)�n/k�, consider hamiltonian paths starting at node 1 and not going to any of the nodes i,
i�k + 1 before it goes through all the nodes 1, 2, . . . , k. Going through all the first k nodes can be arranged in (k − 1)!
different ways. After covering the first k nodes we send the path under consideration to node k + 1, which can be done
since we deal with Gk,n. Then the path covers all, but not any other, of the k − 1 nodes k + 2, k + 3, . . . , 2k (this can be
done in (k − 1)! ways) and comes to node 2k + 1, etc. That is, we subdivide the nodes of Gk,n into groups of k nodes
and go through all the nodes of a group before proceeding with the nodes of the group to the right of it. The number
of such paths can be estimated from below by ((k − 1)!)�n/k�. Clearly, we get the desired result after multiplying the
last formula by 2 (any hamiltonian path can be oriented in two ways). �

Remark 5. The bounds we get in Theorem 4 are rough. We are grateful to the referee for pointing out to an improvement
of the upper bound in the theorem by making it n(2k − 2)(2k − 3)n−2. In fact, one can show that n(2k − 2)(2k)!(2k −
3)n−2k−2 is an upper bound in Theorem 4. However, these expressions being less compact do not improve significantly
the asymptotic behavior of the bound, and we keep the original upper bound in the theorem.

3. Prohibitions giving k-determinability

The set of k-determined n-permutations can be described by the language of prohibited patterns L′
k,n as follows.

Using Theorem 1, we can describe the set of k-determined n-permutations by prohibiting patterns of the forms xX(x+1)

and (x+1)Xx, where X is a permutation on {1, 2, . . . , |X|+2}−{x, x+1} (|X| is the number of elements in X), the length
of X is at least k − 1, and 1�x�1 + |X| < n. We collect all such patterns in the set L′

k,n; also, let L′
k = ⋃

n�0L
′
k,n.

Before proceeding further, we need to justify that prohibiting the patterns from L′
k we indeed get all k-determined

permutations and no other permutation. One direction is trivial: if one has a factor yY (y + 1) (considerations for
(y + 1)Yy are similar and we skip them in what follows) of length k + 1 or more in a permutation �, then � is not
k-determined, and the pattern of this factor is of the form xX(x + 1) with the conditions stated above.

Conversely, we have to prove that, as soon as a factor in � has a pattern xX(x+1), the permutation is not k-determined.
Note that the factor itself may not be of the form yY (y + 1): for instance, take � = 14532, k = 3; the pattern of 1453
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Fig. 2. Graph P4(L3) (the case k = 3).

is of the prohibited form, but 1453 itself is not of the form yY (y + 1). Let a factor yYz in �, y < z, have a pattern
xX(x + 1) from L′

k . Obviously, there are no t in Y such that y < t < z. Next, consider maximum i, 0� i�z − 1, such
that all the elements y, y + 1, . . . , y + i are to the left of Y in � and y + i + 1 is to the right of Y in � (such y + i + 1
exists because of z). Then clearly the distance between y + i and y + i + 1 is at least k and thus � is not k-determined
due to Theorem 1.

A prohibited pattern X = aYb from L′
k , where a and b are some consecutive elements and Y is a (possibly empty)

word, is called irreducible if the patterns of Yb and aY are not prohibited, in other words, if the patterns of Yb and aY
are k-determined permutations. Let Lk be the set consisting only of irreducible prohibited patterns in L′

k .

Theorem 6. Let k be fixed. The number of (irreducible) prohibitions in Lk is finite. Moreover, the longest prohibited
patterns in Lk are of length 2k − 1.

Proof. Suppose that a pattern P = xX(x + 1) of length 2k or larger belongs to Lk (the case P = (x + 1)Xx can be
considered in the same way). Then obviously X contains either x − 1 or x + 2 on the distance at least k − 1 from either
x or x + 1. In any case, clearly we get either a prohibited pattern P ′ = yY (y + 1) or P ′ = (y + 1)Yy, which is a proper
factor of P. Contradiction with P being irreducible. �

Theorem 6 allows us to use the transfer matrix method to find the number of k-determined permutations. Indeed, we
can consider the graph P2k−1(Lk), which is the graph P2k−1 of pattern overlaps without nodes containing prohibited
patterns as factors. Then each path in the graph determines a single permutation since to be “k-determined” implies
to be “(2k − 1)-determined.” Thus the number Ak,n of k-determined n-permutation is equal to the number of paths of
length n−2k +1 in the graph, which can be found using the transfer matrix method [14, Theorem. 4.7.2]. In particular,
the method makes the following statement true.

Theorem 7. The generating function Ak(x)=∑
n�0Ak,nx

n for the number of k-determined permutations is rational.

Remark 8. In fact, one can use a smaller graph, namely P2k−2(Lk), in which we mark arcs by corresponding
permutations of length 2k − 1; then we remove arcs containing prohibitions and use the transfer matrix method. In this
case, to an n-permutation there corresponds a path of length n − 2k + 2. See Fig. 2 for such a graph in the case k = 3.

A permutation is called crucial with respect to a given set of prohibitions, if it does not contain any prohibitions, but
adjoining any element to the right of it leads to a permutation containing a prohibition. In our case, an n-permutation
is crucial if it is k-determined, but adjoining any element to the right of it, and thus creating an (n + 1)-permutation,
leads to a non-k-determined permutation.1 If such a � exists, then the path in P2k−1(Lk) corresponding to � ends

1 As it is mentioned in the Introduction, crucial words are studied, for example, in [6]. We define crucial permutations with respect to a set of
prohibited patterns in a similar way. However, as Theorem 9 shows, there are no crucial permutations with respect to Lk .
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Fig. 3. Transfer matrix corresponding to P4(L3).

up in a sink. However, the following theorem shows that there are no crucial permutations with respect to the set of
prohibitions Lk , thus any path in P2k−1(Lk) can always be continued.

Theorem 9. There do not exist crucial permutations with respect to Lk .

Proof. If k = 2 then only the monotone permutations are k-determined, and we always can extend to the right a
decreasing permutation by the least element, and the increasing permutation by the largest element.

Suppose k�3 and let Xx be an n-permutation avoiding Lk , that is, Xx is k-determined. If x = 1 then Xx can
be extended to the right by 1 without creating a prohibition; if x = n then Xx can be extended to the right by
n + 1 without creating a prohibition. Otherwise, due to Theorem 1, both x − 1 and x + 1 must be among the k

leftmost elements of Xx. In particular, at least one of them, say y, is among the k − 1 leftmost elements of Xx. If
y = x − 1, we extend Xx by x (the “old” x becomes (x + 1)); if y = x + 1, we extend Xx by x + 1 (the “old”
x + 1 becomes (x + 2)). In either of the cases considered above, Theorem 1 guarantees that no prohibitions will be
created. So, Xx can be extended to the right to form a k-determined (n + 1)-permutation, and thus Xx is not a crucial
n-permutation. �

3.1. The case k = 3

In this subsection we take a closer look at the graph P4(L3) whose paths give all 3-determined permutations (we
read marked arcs of a path to form the permutation corresponding to it). It turns out that P4(L3) has a nice structure
(see Fig. 2).

Suppose w′ denotes the complement to an n-permutation w = w1w2 . . . wn. That is, w′
i = n − wi + 1 for 1� i�n.

P4(L3) has the following 12 nodes (those are all 3-determined 4-permutations): a = 1234, a′ = 4321, b = 1324,
b′ = 4231, c = 1243, c′ = 4312, d = 3421, d ′ = 2134, e = 1423, e′ = 4132, f = 3241, f ′ = 2314.

In Fig. 2 we draw 20 arcs corresponding to the 20 3-determined 5-permutations. Notice that P4(L3) is not strongly
connected: for example, there is no directed path from c to f.

To find the generating function A3(x) = ∑
n�0A3,nx

n for the number of 3-determined permutations one can build
a 12 × 12 matrix (for example, the one given by the adjacency table in Fig. 3) corresponding to P4(L3) and to use the
transfer matrix method to get

A3(x) = 1 − 2x + 2x2 + x3 − x5 + x6

(1 − x − x3)(1 − x)2

which is true due to the known result [13, A003274] mentioned above. Note that the largest eigenvalue of the matrix
given by Fig. 3 is 1.4655 . . . , and thus A3,n grows like (1.4655 . . . )n, while the lower bound in Theorem 4 is 2n/3 =
(1.2599 . . . )n.
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Fig. 4. The poset associated with the path w = 134265 in P3 (k = 3).

In general, even though finding explicit generating functions for k�4 by the transfer matrix method is a rather
difficult problem, one can use the method for studying the asymptotic behavior of Ak,n by attempting to find/estimate
the largest eigenvalue of the corresponding matrix.

4. Open problems

It is clear that any n-permutation is n-determined, whereas for n�2 no n-permutation is 1-determined. Moreover,
for any n�2 there are exactly two 2-determined permutations, namely the monotone permutations. For a permutation
�, we define its index IR(�) of reconstructibility to be the minimal integer k such that � is k-determined.

Problem 1. Describe the distribution of IR(�) among all n-permutations.

Problem 2. Study the set of k-determined permutations in the case when a set of nodes is removed from Pk , that is,
when some of patterns of length k are prohibited.

An n-permutation � is m-k-determined, m, k�1, if there are exactly m (different) n-permutations having the same
path in Pk as � has. In particular, the k-determined permutations correspond to the case m = 1.

Problem 3. Find the number of m-k-determined n-permutations.

Problem 3 is directly related to finding the number of linear extensions of a poset. Indeed, to any path w in Pk there
naturally corresponds a poset W. In particular, any factor of length k in w consists of mutually comparable elements
in W. For example, if k = 3 and w = 134265 then W is the poset in Fig. 4 (the elements of the poset are the w’s
elements; the order of the poset is the natural order on {1, 2, . . . , n} where two elements are comparable if and only if
they lie at distance at most k − 1 in w).

If all the elements are comparable to each other in w, thenW is a linear order and w gives a k-determined permutation.
If W contains exactly one pair of incomparable elements, then w gives (two) 2-k-determined permutations. In the
example in Fig. 4, there are four pairs of incomparable elements, (1,2), (1,5), (3,5), and (4,5), and this poset can be
extended to a linear order in 7 different ways giving (seven) 7-3-determined permutations.

Problem 4. Which posets on n elements appear while considering paths (of length n−k+1) inPk? Give a classification
of the posets (different from the classification by the number of pairs of incomparable elements).

Problem 5. How many linear extensions can a poset (associated to a path in Pk) on n elements with t pairs of
incomparable elements have?

Problem 6. Describe the structure of Lk (see Section 3 for definitions) that consists of irreducible prohibitions. Is
there a nice way to generate Lk? How many elements does Lk have?
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