7 research outputs found

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the -electron energy spectrum near the endpoint of tritium -decay. An integral energy analysis will be performed by an electro-static spectrometer (“Main Spectrometer”), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240m3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the -electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 1011^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016

    Joint experiments on small tokamaks: edge plasma studies on CASTOR

    No full text
    The 1st Joint (Host Laboratory) Experiment on 'joint research using small tokamaks' was carried out using the IPP Prague experimental facility 'CASTOR tokamak'. The main experimental programme was aimed at characterizing the edge plasma in a tokamak by using different advanced diagnostic techniques. It is widely recognized that characterization of phenomena occurring at the plasma edge is essential for understanding the plasma confinement in a tokamak. The edge plasma in small and large scale experiments has many similar features, and the results obtained through detailed measurements in a small flexible device such as CASTOR are in many aspects still relevant to those in large tokamaks. Therefore, it is expected that the results of this joint experiment will have general validity. The radial and poloidal structure of electrostatic turbulence was characterized. The effects of edge biasing were analysed. Radiation fluctuations and profile measurements were performed using fast bolometry. Plasma position measurements were performed using novel Hall sensors

    Joint experiments on the tokamaks CASTOR and T-10

    No full text
    Small tokamaks may significantly contribute to the better understanding of phenomena in a wide range of fields such as plasma confinement and energy transport; plasma stability in different magnetic configurations; plasma turbulence and its impact on local and global plasma parameters; processes at the plasma edge and plasma-wall interaction; scenarios of additional heating and non-inductive current drive; new methods of plasma profile and parameter control; development of novel plasma diagnostics; benchmarking of new numerical codes and so on. Furthermore, due to the compactness, flexibility, low operation costs and high skill of their personnel small tokamaks are very convenient to develop and test new materials and technologies. Small tokamaks are suitable and important for broad international cooperation, providing the necessary environment and manpower to conduct dedicated joint research programmes. In addition, the experimental work on small tokamaks is very appropriate for the education of students, scientific activities of post-graduate students and for the training of personnel for large tokamaks. The first Joint (Host Laboratory) Experiment (JEI) has been carried out in 2005 on the CASTOR tokamak at the IPP Prague, Czech Republic. It was jointly organized by the IPP-ASCR and KFKI HAC, Budapest, involved 20 scientists from 7 countries and was supported through the IAEA and the ICTP, Trieste. The objective of JE1 was to perform studies of plasma edge turbulence and plasma confinement. Following the success of JE1, JE2 has been performed on T-10 at RRC "Kurchatov Institute" in Moscow; 30 scientists from 13 countries participated in this experiment. This experiment aimed to continue JEI turbulence studies, now extending them to the plasma core. Results of JEI and JE2 will be overviewed and compared

    Results of Joint Experiments and other IAEA activities on research using small tokamaks

    No full text
    This paper presents an overview of the results obtained during the Joint Experiments organized in the framework of the IAEA Coordinated Research Project on `Joint Research Using Small Tokamaks` that have been carried out on the tokamaks CASTOR at IPP Prague, Czech Republic (2005), T-10 at RRC `Kurchatov Institute`, Moscow, Russia (2006), and the most recent one at ISTTOK at IST, Lisbon, Portugal, in 2007. Experimental programmes were aimed at diagnosing and characterizing the core and the edge plasma turbulence in a tokamak in order to investigate correlations between the occurrence of transport barriers, improved confinement, electric fields and electrostatic turbulence using advanced diagnostics with high spatial and temporal resolution. On CASTOR and ISTTOK, electric fields were generated by biasing an electrode inserted into the edge plasma and an improvement of the global particle confinement induced by the electrode positive biasing has been observed. Geodesic acoustic modes were studied using heavy ion beam diagnostics on T-10 and ISTTOK and correlation reflectometry on T-10. ISTTOK is equipped with a gallium jet injector and the technical feasibility of gallium jets interacting with plasmas has been investigated in pulsed and ac operation. The first Joint Experiments have clearly demonstrated that small tokamaks are suitable for broad international cooperation to conduct dedicated joint research programmes. Other activities within the IAEA Coordinated Research Project on Joint Research Using Small Tokamaks are also overviewed.GACR Grant Agency of Academy of Sciences of the Czech Republic[KJB100430504]ROSATOM[RF 02.516.11.6068]ROSATOM[RFBR 0502-17016]ROSATOMROSATOM[07-02-01001]ROSATOM[INTAS 100008-8046]ROSATOM[NWO-RFBR 047.016.015]IAEAICT
    corecore