10,403 research outputs found

    Microlensing events from the 11-year observations of the Wendelstein Calar Alto Pixellensing Project

    Full text link
    We present the results of the decade-long M31 observation from the Wendelstein Calar Alto Pixellensing Project (WeCAPP). WeCAPP has monitored M31 from 1997 till 2008 in both R- and I-filters, thus provides the longest baseline of all M31 microlensing surveys. The data are analyzed with the difference imaging analysis, which is most suitable to study variability in crowded stellar fields. We extracted light curves based on each pixel, and devised selection criteria that are optimized to identify microlensing events. This leads to 10 new events, and sums up to a total of 12 microlensing events from WeCAPP, for which we derive their timescales, flux excesses, and colors from their light curves. The color of the lensed stars fall between (R-I) = 0.56 to 1.36, with a median of 1.0 mag, in agreement with our expectation that the sources are most likely bright, red stars at post main-sequence stage. The event FWHM timescales range from 0.5 to 14 days, with a median of 3 days, in good agreement with predictions based on the model of Riffeser et al. (2006).Comment: 44 pages, 16 figures, 5 tables. ApJ accepte

    Cosmic variance of the galaxy cluster weak lensing signal

    Full text link
    Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M_200m=10^14...10^15 h^-1 M_sol, z=0.25...0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate mass uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ~20 per cent uncertainty from cosmic variance alone at M_200m=10^15 h^-1 M_sol and z=0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). These biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.Comment: 14 pages, 6 figures; submitted to MNRA

    The sizes of galaxy halos in galaxy cluster Abell 1689

    Full text link
    The multiple images observed in galaxy cluster Abell 1689 provide strong constraints not only on the mass distribution of the cluster but also on the ensemble properties of the cluster galaxies. Using parametric strong lensing models for the cluster, and by assuming well motivated scaling laws between the truncation radius s and the velocity dispersion sigma of a cluster galaxy we are able to derive sizes of the dark matter halos of cluster galaxies. For the scaling law expected for galaxies in the cluster environment (s propto sigma), we obtain s = 64^{+15}_{-14} (sigma / 220 km/s) kpc. For the scaling law used for galaxies in the field with s propto sigma^2 we find s = 66^{+18}_{-16} (sigma / 220 km/s)^2 kpc. Compared to halos of field galaxies, the cluster galaxy halos in Abell 1689 are strongly truncated.Comment: 12 pages, 4 figures. Accepted for publication in the Ap

    Weak Lensing Reconstruction and Power Spectrum Estimation: Minimum Variance Methods

    Full text link
    Large-scale structure distorts the images of background galaxies, which allows one to measure directly the projected distribution of dark matter in the universe and determine its power spectrum. Here we address the question of how to extract this information from the observations. We derive minimum variance estimators for projected density reconstruction and its power spectrum and apply them to simulated data sets, showing that they give a good agreement with the theoretical minimum variance expectations. The same estimator can also be applied to the cluster reconstruction, where it remains a useful reconstruction technique, although it is no longer optimal for every application. The method can be generalized to include nonlinear cluster reconstruction and photometric information on redshifts of background galaxies in the analysis. We also address the question of how to obtain directly the 3-d power spectrum from the weak lensing data. We derive a minimum variance quadratic estimator, which maximizes the likelihood function for the 3-d power spectrum and can be computed either from the measurements directly or from the 2-d power spectrum. The estimator correctly propagates the errors and provides a full correlation matrix of the estimates. It can be generalized to the case where redshift distribution depends on the galaxy photometric properties, which allows one to measure both the 3-d power spectrum and its time evolution.Comment: revised version, 36 pages, AAS LateX, submitted to Ap

    Dinâmica de crescimento de angico (Anadenanthera colubrina var. cebil) no Pantanal Mato-Grossense.

    Get PDF
    bitstream/CNPF-2009-09/41784/1/circ-tec102.pd

    Growth dynamics of Anadenanthera colubrina var. cebil and Tabebuia impetiginosa from Pantanal Mato-grossense, Brazil.

    Get PDF
    O uso de informações obtidas por estudos com anéis de crescimento é cada vez mais freqüente e são muito importantes para florestas naturais tropicais onde a demanda por madeira é grande, mas geralmente não existem dados disponíveis sobre o crescimento das espécies arbóreas para a estruturação de programas de manejo. O Pantanal da Nhecolândia, sub-região do Pantanal Mato-Grossense, pode ser visto como uma dessas regiões onde as florestas naturais são sistematicamente cortadas para extração de madeira, ou para implantação de pastagens cultivadas. Fatores climáticos e edáficos, característicos do Pantanal, sub-região da Nhecolândia, induzem a formação de anéis anuais de crescimento. Objetivou-se, com este trabalho, determinar a idade e os incrementos radiais de Anadenanthera colubrina var. cebil e Tabebuia impetiginosa, pela análise dos anéis de crescimento. Discos de oito árvores de Anadenanthera colubrina var. cebil e seis de Tabebuia impetiginosa foram coletados em julho de 1996, na fazenda Nhumirim, de propriedade da Embrapa Pantanal, localizada na sub-região da Nhecolândia. As árvores de Anadenanthera colubrina var. cebil e Tabebuia impetiginosa apresentavam 14 a 30 e 15 a 30 anos respectivamente, com crescimento anual médio, em diâmetro a 1,3 m do solo, variando de 5,4 a 8,0 mm em Anadenanthera colubrina var. cebil e de 4,8 a 11,6 mm em Tabebuia impetiginosa. O tempo médio para Anadenanthera colubrina var. cebil e Tabebuia impetiginosa atingirem 40 cm de diâmetro foi estimado em, no mínimo, 55 anos

    Simplifying Random Satisfiability Problem by Removing Frustrating Interactions

    Full text link
    How can we remove some interactions in a constraint satisfaction problem (CSP) such that it still remains satisfiable? In this paper we study a modified survey propagation algorithm that enables us to address this question for a prototypical CSP, i.e. random K-satisfiability problem. The average number of removed interactions is controlled by a tuning parameter in the algorithm. If the original problem is satisfiable then we are able to construct satisfiable subproblems ranging from the original one to a minimal one with minimum possible number of interactions. The minimal satisfiable subproblems will provide directly the solutions of the original problem.Comment: 21 pages, 16 figure

    The old and heavy bulge of M31 I. Kinematics and stellar populations

    Full text link
    We present new optical long-slit data along 6 position angles of the bulge region of M31. We derive accurate stellar and gas kinematics reaching 5 arcmin from the center, where the disk light contribution is always less than 30%, and out to 8 arcmin along the major axis, where the disk makes 55% of the total light. We show that the velocity dispersions of McElroy (1983) are severely underestimated (by up to 50 km/s) and previous dynamical models have underestimated the stellar mass of M31's bulge by a factor 2. Moreover, the light-weighted velocity dispersion of the galaxy grows to 166 km/s, thus reducing the discrepancy between the predicted and measured mass of the black hole at the center of M31. The kinematic position angle varies with distance, pointing to triaxiality. We detect gas counterrotation near the bulge minor axis. We measure eight emission-corrected Lick indices. They are approximately constant on circles. We derive the age, metallicity and alpha-element overabundance profiles. Except for the region in the inner arcsecs of the galaxy, the bulge of M31 is uniformly old (>12 Gyr, with many best-fit ages at the model grid limit of 15 Gyr), slightly alpha-elements overabundant ([alpha/Fe]~0.2) and at solar metallicity, in agreement with studies of the resolved stellar components. The predicted u-g, g-r and r-i Sloan color profiles match reasonably well the dust-corrected observations. The stellar populations have approximately radially constant mass-to-light ratios (M/L_R ~ 4-4.5 for a Kroupa IMF), in agreement with stellar dynamical estimates based on our new velocity dispersions. In the inner arcsecs the luminosity-weighted age drops to 4-8 Gyr, while the metallicity increases to above 3 times the solar value.Comment: Accepted for publication in A&

    The Wendelstein Calar Alto Pixellensing Project (WeCAPP): the M31 Nova catalogue

    Full text link
    We present light curves from the novae detected in the long-term, M31 monitoring WeCAPP project. The goal of WeCAPP is to constrain the compact dark matter fraction of the M31 halo with microlensing observations. As a by product we have detected 91 novae benefiting from the high cadence and highly sensitive difference imaging technique required for pixellensing. We thus can now present the largest CCD and optical filters based nova light curve sample up-to-date towards M31. We also obtained thorough coverage of the light curve before and after the eruption thanks to the long-term monitoring. We apply the nova taxonomy proposed by Strope et al. (2010) to our nova candidates and found 29 S-class novae, 10 C-class novae, 2 O-class novae and 1 J-class nova. We have investigated the universal decline law advocated by Hachichu and Kato (2006) on the S-class novae. In addition, we correlated our catalogue with the literature and found 4 potential recurrent novae. Part of our catalogue has been used to search for optical counter-parts of the super soft X-ray sources detected in M31 (Pietsch et al. 2005). Optical surveys like WeCAPP, and coordinated with multi-wavelength observation, will continue to shed light on the underlying physical mechanism of novae in the future.Comment: 15 pages, 15 figures, 7 tables, A&A accepted for publication. The appendix is stored in the Data Conservanc
    • …
    corecore