8,461 research outputs found
Does breathing disturb arm to leg coordination in butterfly
International audienc
Efficiency of autonomous soft nano-machines at maximum power
We consider nano-sized artificial or biological machines working in steady
state enforced by imposing non-equilibrium concentrations of solutes or by
applying external forces, torques or electric fields. For unicyclic and
strongly coupled multicyclic machines, efficiency at maximum power is not
bounded by the linear response value 1/2. For strong driving, it can even
approach the thermodynamic limit 1. Quite generally, such machines fall in
three different classes characterized, respectively, as "strong and efficient",
"strong and inefficient", and "balanced". For weakly coupled multicyclic
machines, efficiency at maximum power has lost any universality even in the
linear response regime
Hydrologic Properties of Subarctic Organic Soils
Completion Report
for
U. S. Forest Service
Institute of Northern Forestry
Cooperative Agreement No. 16 USC 581; 581a-581iThe need for understanding the natural system and how it responds
to various stresses is important; this is especially so in an environment
where the climate not only sustains permafrost, but develops
massive seasonal frost as well. Consequently, the role of the shallow
surface organic layer is also quite important. Since a slight change in
the soil thermal regime may bring about a phase change in the water or
ice, therefore, the system response to surface alterations such as
burning can be quite severe. The need for a better understanding of the
behavior and properties of the organic layer is, therefore, accentuated.
The central theme of this study was the examination of the hydrologic
and hydraulic properties of subarctic organic soils. Summarized
in this paper are the results of three aspects of subarctic organic soil
examinations conducted during the duration of the project. First, a
field site was set up in Washington Creek with the major emphasis on
measuring numerous variables of that soil system during the summer. The
greatest variations in moisture content occur in the thick organic soils
that exist at this site. Our major emphasis was to study the soil
moisture levels in these soils. This topic is covered in the first
major section, including associated laboratory studies. Those laboratory
studies include investigations of several hydraulic and hydrologic
properties of taiga organic and mineral soils. Second, some field data
on organic moisture levels was collected at the site of prescribed burns
in Washington Creek to ascertain the sustainability of fires as a function
of moisture levels. This portion of the study is described under the
second major heading. The last element of this study was a continued
application of the two-dimensional flow model that was developed in an
earlier study funded by the U. S. Forest Service, Institute of Northern
Forestry, and reported by Kane, Luthin, and Taylor (1975a).
Many of the results and concepts gathered in the field work were
integrated into the modeling effort, which is aimed at producing better
estimates of the hydrologic effects of surface disturbances in the black
spruce taiga subarctic ecosystem. This knowledge should also contribute
to better fire management decisions of the same system.The work upon which this report is based was made possible by a
cooperative aid agreement funded by the U. S. Forest Service, Institute
of Northern Forestry, Fairbanks, Alaska. Contribution to this study was
also made by Ohio State University
Effects of seasonability and variability of streamflow on nearshore coastal areas: final report
General nature and scope of the study:
This study examines the variability of streamflow in all
gaged Alaskan rivers and streams which terminate in the ocean.
Forty-one such streams have been gaged for varying periods of
time by the U. S. Geological Survey, Water Resources Division.
Attempts have been made to characterize streamflow statistically
using standard hydrological methods. The analysis scheme
which was employed is shown in the flow chart which follows.
In addition to the statistical characterization, the following
will be described for each stream when possible:
1. average period of break-up initiation (10-day period)
2. average period of freeze-up (10-day period)
3. miscellaneous break-up and freeze-up data.
4. relative hypsometric curve for each basin
5. observations on past ice-jam flooding
6. verbal description of annual flow variation
7. original indices developed in this study to relate streamflow
variability to basin characteristics and regional
climate.This study was supported under contract 03-5-022-56, Task Order
#4, Research Unit #111, between the University of Alaska and NOAA,
Department of Commerce to which funds were provided by the Bureau of
Land Management through an interagency agreement
A Reversibility Parameter for a Markovian Stepper
Recent experimental studies on the stepwize motion of biological molecular
motors have revealed that the ``characteristic distance'' of a step is usually
less than the actual step size. This observation implies that the
detailed-balance condition for kinetic rates of steps is violated in these
motors. In this letter, in order to clarify the significance of the
characteristic distance, we study a Langevin model of a molecular motor with a
hidden degree of freedom. We find that the ratio of the characteristic distance
to the step size is equal to unity if the dominant paths in the state space are
one dimensional, while it deviates from unity if the dominant paths are
branched. Therefore, this parameter can be utilized to determine the
reversibility of a motor even under a restricted observation.Comment: 6 pages, 2 figures - minor revision
Some taste substances are direct activators of G-proteins
Amphiphilic substances may stimulate cellular events through direct activation of G-proteins. The present experiments indicate that several amphiphilic sweeteners and the bitter tastant, quinine, activate transducin and Gi/Go-proteins. Concentrations of taste substances required to activate G-proteins in vitro correlated with those used to elicit taste. These data support the hypothesis that amphiphilic taste substances may elicit taste through direct activation of G-proteins
Non-linear properties of supercooled liquids in the system Na2O---SiO2
The physical properties, viscosity, density, heat capacity and thermal expansivity, of relaxed supercooled liquids in the temperature range just above the glass transition have been determined for ten compositions along the compositional binary Na2O---SiO2, in the range of 2–45 mole% Na2O, by a combination of scanning calorimetry, dilatometry and micropenetration viscometry. The viscosity, density, heat capacity and thermal expansivity in the glassy state have also been determined.
The heat capacities illustrate a linear composition dependence for the glassy state and a smooth but strongly non-linear composition dependence for the supercooled liquid state. The thermal expansivities were determined by dilatometry up to the glass transition and, by a normalized comparison of relaxation behavior in the glass transition interval, to temperatures 50°C above the glass transition. The expansivity is a linear function of the molar composition in the glass but a strongly non-linear function of molar composition in the supercooled liquid.
The viscosity data just above the glass transition temperature, combined with data from high temperature using the concentric cylinder method, illustrate that the composition dependence of viscosity is strongly non-linear and exhibits an inflection as a function of composition. The glass transition temperature, taken as the peak temperature of the calorimetric measurements, is not in general an isokom in this system.
The data for these property determinations in the Na2O---SiO2 system provide much improved constraints on the partial molar properties of SiO2 liquid and partial molar properties of the SiO2 component in silicate melts. The complex behavior of the transport properties, i.e. the glass transition temperature and the viscosity, point to complexities in viscous flow beyond that of simple binary mixing of the Na2O and SiO2 components
- …