116 research outputs found

    WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis.

    Get PDF
    WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system.We thank Nadia Wänn for maintenance of mice colonies; the members of Bryja and Arenas lab for their help and suggestions; Martin Häring for help with in situ analysis; Johnny Söderlund and Alessandra Nanni for their technical and secretarial assistance; and the CLICK imaging facility at Karolinska Institutet for technical support. We thank MEYS CR for support to the following core facilities: Proteomics (CIISB research infrastructure project LM2015043), cellular imaging at CEITEC institution at Masaryk University (LM2015062 Czech-BioImaging) Czech Centre for Phenogenomics (LM2015040), Higher quality and capacity of transgenic model breeding (by MEYS and ERDF, OP RDI CZ.1.05/2.1.00/19.0395), Czech Centre for Phenogenomics: developing towards translation research (by MEYS and ESIF, OP RDE CZ.02.1.01/0.0/0.0/16_013/0001789). The collaboration between Masaryk University and Karolinska Institutet (KI-MU program), was co-financed by the European Social Fund and the state budget of the Czech Republic (CZ.1.07/2.3.00/20.0180). Funding to the VB lab was obtained from Neuron Fund for Support of Science (23/2016), and Czech Science Foundation (GA17-16680S). Work in the EA lab was supported by the Swedish Research Council (VR projects: DBRM, 2011-3116, 2011-3318 and 2016-01526), Swedish Foundation for Strategic Research (SRL program and SLA SB16-0065), European Commission (NeuroStemcellRepair), Karolinska Institutet (SFO Strat Regen, Senior grant 2018), Hjärnfonden (FO2015:0202 and FO2017-0059) and Cancerfonden (CAN 2016/572). Research in the JCV lab was supported by Karolinska Institutet Foundations. KK was supported by Masaryk University (MUNI/E/0965/2016). DP and ZZ were supported by the CEITEC 2020 (LQ1601) project from MEYS CR

    High Spatial Resolution Time-of-Flight Secondary Ion Mass Spectrometry for the Masses: A Novel Orthogonal ToF FIB-SIMS Instrument with In Situ

    Get PDF
    We describe the design and performance of an orthogonal time-of-flight (TOF) secondary ion mass spectrometer that can be retrofitted to existing focused ion beam (FIB) instruments. In particular, a simple interface has been developed for FIB/SEM instruments from the manufacturer Tescan. Orthogonal extraction to the mass analyser obviates the need to pulse the primary ion beam and does not require the use of monoisotopic gallium to preserve mass resolution. The high-duty cycle and reasonable collection efficiency of the new instrument combined with the high spatial resolution of a gallium liquid metal ion source allow chemical observation of features smaller than 50 nm. We have also demonstrated the integration of a scanning probe microscope (SPM) operated as an atomic force microscope (AFM) within the FIB/SEM-SIMS chamber. This provides roughness information, and will also allow true three dimensional chemical images to be reconstructed from SIMS measurements

    A State of the Art on Railway Simulation Modelling Software Packages and Their Application to Designing Baggage Transfer Services

    Get PDF
    There is a new baggage transfer service suggested in Newcastle Central Station. In order to prove that this service is feasible, a simulation model can be developed to test the concept and operating pattern behind. For the purposes of this paper, we intend to organize a literature review on simulation modelling software packages employed to study service design. Specifically, this paper has compared five different simulation software packages used by the railway industry to study service-related challenges. As a result, it is suggested that SIMUL8, a macroscopic discrete event-based software package, should be used among the five compared ones because of its simplicity and the ability to give practical results for the design and performance of such a baggage transfer system

    A scientific critique of the two-degree climate change target

    Get PDF
    The world's governments agreed to limit global mean temperature change to below 2-derees C compared with pr-industrial levels in the years following the 2009 climate conference in Copenhagen. This 2-degrees C warming target is perceived by the pulic as a universally accepted goal, identified by scientists as a safe limit that avoids dangerous climate change. This perception is incorrect: no scientific assessment has clearly justified or defended the 2-degrees C target as a safe level of warming, and indeed, this is not a problem that science alone can address. We argue that global temperature is the best climate target quantity, but it is unclear what level can be consiered safe. The 2-degrees C target is useful for anchoring discussions, but has been ineffective in triggering the required emission reductions; debates on considering a lower target are strongly at odds with the current real-world level of action. These debates are moot, however, as the decisions that need to be taken now to limit warming to 1.5 or 2 degrees C are very similar. We need to agree how to start, not where to end mitigation

    Keeping global warming within 1.5°C constrains emergence of aridification

    Get PDF
    Aridity – the ratio of atmospheric water supply (precipitation; P) to demand (potential evapotranspiration; PET) – is projected to decrease (i.e., become drier) as a consequence of anthropogenic climate change, aggravating land degradation and desertification. However, the timing of significant aridification relative to natural variability – defined here as the time of emergence for aridification (ToEA) – is unknown, despite its importance in designing and implementing mitigation policy. Here we estimate ToEA from projections of 27 global climate models (GCMs) under Representative Concentration Pathways (RCPs) RCP4.5 and RCP8.5, and in doing so, identify where emergence occurs before global mean warming reaches 1.5°C and 2°C above the pre-industrial level. Based on the ensemble median ToEA for each grid cell, aridification emerges over 32% (RCP4.5) and 24% (RCP8.5) of the total land surface before the ensemble median of global mean temperature change reaches 2°C in each scenario. Moreover, ToEA is avoided in about two-thirds of the above regions if the maximum global warming level is limited to 1.5°C. Early action for accomplishing the 1.5°C temperature goal can therefore dramatically reduce the likelihood of large regions facing significant aridification and related potential impacts

    A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems

    Full text link

    Study of isotope exchange reactions by double labelling

    No full text

    Subgrain formation during deformation: physical origin and consequences

    No full text
    International audienceThe formation of subgrains in the course of plastic deformation is explained as a result of a trend to make the deformation easier by locally reducing the number of active slip systems. Local preference of one slip system changes the crystal orientation with respect to stress (Schmid factor), thus leading to geometrical softening or hardening. The trend to subgrain formation is treated in the framework of continuum mechanics as an instability against internal bending for the simple case of a crystal originally oriented for symmetric double slip. Once formed, the boundaries of the subgrains lead to hardening as they induce long-range internal back stresses in the interior of the subgrains by forcing the mobile dislocations to take a bowed configuration. Simple dislocation-based and Cosserat models are recalled to explain the size-dependent subgrain hardening, where smaller subgrains are stronger
    corecore