25 research outputs found

    3D Visualisation of Additive Occlusion and Tunable Full-Spectrum Fluorescence in Calcite

    Get PDF
    From biomineralization to synthesis, organic additives provide an effective means of controlling crystallisation processes. There is growing evidence that these additives are often occluded within the crystal lattice, where this promises an elegant means of creating nanocomposites and tuning physical properties. Here, we use the incorporation of sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite (CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that these additives are incorporated within specific zones, as defined by the growth conditions, and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and lifetime imaging microscopy also show that the dyes experience unique local environments within different zones. Our strategy was then extended to simultaneously incorporate mixtures of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles whose output can be tuned as required

    Instantaneous 4D micro-particle image velocimetry (mu PIV) via multifocal microscopy (MUM)

    Get PDF
    Multifocal microscopy (MUM), a technique to capture multiple fields of view (FOVs) from distinct axial planes simultaneously and on one camera, was used to perform micro-particle image velocimetry (µPIV) to reconstruct velocity and shear stress fields imposed by a liquid flowing around a cell. A diffraction based multifocal relay was used to capture images from three different planes with 630 nm axial spacing from which the axial positions of the flow-tracing particles were calculated using the image sharpness metric. It was shown that MUM can achieve an accuracy on the calculated velocity of around (0.52 ± 0.19) µm/s. Using fixed cells, MUM imaged the flow perturbations at sub-cellular level, which showed characteristics similar to those observed in the literature. Using live cells as an exemplar, MUM observed the effect of changing cell morphology on the local flow during perfusion. Compared to standard confocal laser scanning microscope, MUM offers a clear advantage in acquisition speed for µPIV (over 300 times faster). This is an important characteristic for rapidly evolving biological systems where there is the necessity to monitor in real time entire volumes to correlate the sample responses to the external forces

    Multicolour Single Molecule Imaging in Cells with Near Infra-Red Dyes

    Get PDF
    Background: The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. Methodology/Principal Findings: A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW) were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells

    Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM)

    Get PDF
    Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scattering of illumination. By comparative analysis of epifluorescence and TIRF in root cells, it is demonstrated that TIRFM can generate high contrast images, superior to other approaches, from intact plant cells. It is also shown that TIRF imaging is possible not only at the plasma membrane level, but also in organelles, for example the nucleus, due to the presence of the central vacuole. Importantly, it is demonstrated for the first time that this is TIRF excitation, and not TIRF-like excitation described as variable-angle epifluorescence microscopy (VAEM), and it is shown how to distinguish the two techniques in practical microscopy. These TIRF images show the highest signal-to-background ratio, and it is demonstrated that they can be used for single-molecule microscopy. Rare protein events, which would otherwise be masked by the average molecular behaviour, can therefore be detected, including the conformations and oligomerization states of interacting proteins and signalling networks in vivo. The demonstration of the application of TIRFM and single-molecule analysis to plant cells therefore opens up a new range of possibilities for plant cell imaging
    corecore