20 research outputs found

    The central slope of dark matter cores in dwarf galaxies: Simulations vs. THINGS

    Get PDF
    We make a direct comparison of the derived dark matter (DM) distributions between hydrodynamical simulations of dwarf galaxies assuming a LCDM cosmology and the observed dwarf galaxies sample from the THINGS survey in terms of (1) the rotation curve shape and (2) the logarithmic inner density slope alpha of mass density profiles. The simulations, which include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating and most importantly physically motivated gas outflows driven by supernovae (SNe), form bulgeless galaxies with DM cores. We show that the stellar and baryonic mass is similar to that inferred from photometric and kinematic methods for galaxies of similar circular velocity. Analyzing the simulations in exactly the same way as the observational sample allows us to address directly the so-called "cusp/core" problem in the LCDM model. We show that the rotation curves of the simulated dwarf galaxies rise less steeply than CDM rotation curves and are consistent with those of the THINGS dwarf galaxies. The mean value of the logarithmic inner density slopes alpha of the simulated galaxies' dark matter density profiles is ~ -0.4 +- 0.1, which shows good agreement with \alpha = -0.29 +- 0.07 of the THINGS dwarf galaxies. The effect of non-circular motions is not significant enough to affect the results. This confirms that the baryonic feedback processes included in the simulations are efficiently able to make the initial cusps with \alpha ~ -1.0 to -1.5 predicted by dark-matter-only simulations shallower, and induce DM halos with a central mass distribution similar to that observed in nearby dwarf galaxies.Comment: 13 pages, 7 figures; Accepted for publication in AJ; minor correction

    Strongly interacting polaritons in coupled arrays of cavities

    Get PDF
    Observing quantum phenomena in strongly correlated many-particle systems is difficult because of the short length- and timescales involved. Exerting control over the state of individual elements within such a system is even more so, and represents a hurdle in the realization of quantum computing devices. Substantial progress has been achieved with arrays of Josephson junctions and cold atoms in optical lattices, where detailed control over collective properties is feasible, but addressing individual sites remains a challenge. Here we show that a system of polaritons held in an array of resonant optical cavities—which could be realized using photonic crystals or toroidal microresonators—can form a strongly interacting many-body system showing quantum phase transitions, where individual particles can be controlled and measured. The system also offers the possibility to generate attractive on-site potentials yielding highly entangled states and a phase with particles much more delocalized than in superfluids

    Lifespan Extension by Preserving Proliferative Homeostasis in Drosophila

    Get PDF
    Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan

    Circuit-based interrogation of sleep control.

    Get PDF
    Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain

    Dark Matter in the Milky Way's Dwarf Spheroidal Satellites

    Full text link
    The Milky Way's dwarf spheroidal satellites include the nearest, smallest and least luminous galaxies known. They also exhibit the largest discrepancies between dynamical and luminous masses. This article reviews the development of empirical constraints on the structure and kinematics of dSph stellar populations and discusses how this phenomenology translates into constraints on the amount and distribution of dark matter within dSphs. Some implications for cosmology and the particle nature of dark matter are discussed, and some topics/questions for future study are identified.Comment: A version with full-resolution figures is available at http://www.cfa.harvard.edu/~mwalker/mwdsph_review.pdf; 70 pages, 22 figures; invited review article to be published in Vol. 5 of the book "Planets, Stars, and Stellar Systems", published by Springe

    Dynamics of Disks and Warps

    Full text link
    This chapter reviews theoretical work on the stellar dynamics of galaxy disks. All the known collective global instabilities are identified, and their mechanisms described in terms of local wave mechanics. A detailed discussion of warps and other bending waves is also given. The structure of bars in galaxies, and their effect on galaxy evolution, is now reasonably well understood, but there is still no convincing explanation for their origin and frequency. Spiral patterns have long presented a special challenge, and ideas and recent developments are reviewed. Other topics include scattering of disk stars and the survival of thin disks.Comment: Chapter accepted to appear in Planets, Stars and Stellar Systems, vol 5, ed G. Gilmore. 32 pages, 17 figures. Includes minor corrections made in proofs. Uses emulateapj.st

    Tissue resident stem cells: till death do us part

    Get PDF

    Sleep Physiology, Circadian Rhythms, Waking Performance and the Development of Sleep-Wake Therapeutics

    Get PDF
    Disturbances of the sleep-wake cycle are highly prevalent and diverse. The aetiology of some sleep disorders, such as circadian rhythm sleep-wake disorders, is understood at the conceptual level of the circadian and homeostatic regulation of sleep and in part at a mechanistic level. Other disorders such as insomnia are more difficult to relate to sleep regulatory mechanisms or sleep physiology. To further our understanding of sleep-wake disorders and the potential of novel therapeutics, we discuss recent findings on the neurobiology of sleep regulation and circadian rhythmicity and its relation with the subjective experience of sleep and the quality of wakefulness. Sleep continuity and to some extent REM sleep emerge as determinants of subjective sleep quality and waking performance. The effects of insufficient sleep primarily concern subjective and objective sleepiness as well as vigilant attention, whereas performance on higher cognitive functions appears to be better preserved albeit at the cost of increased effort. We discuss age-related, sex and other trait-like differences in sleep physiology and sleep need and compare the effects of existing pharmacological and non-pharmacological sleep- and wake-promoting treatments. Successful non-pharmacological approaches such as sleep restriction for insomnia and light and melatonin treatment for circadian rhythm sleep disorders target processes such as sleep homeostasis or circadian rhythmicity. Most pharmacological treatments of sleep disorders target specific signalling pathways with no well-established role in either sleep homeostasis or circadian rhythmicity. Pharmacological sleep therapeutics induce changes in sleep structure and the sleep EEG which are specific to the mechanism of action of the drug. Sleep- and wake-promoting therapeutics often induce residual effects on waking performance and sleep, respectively. The need for novel therapeutic approaches continues not at least because of the societal demand to sleep and be awake out of synchrony with the natural light-dark cycle, the high prevalence of sleep-wake disturbances in mental health disorders and in neurodegeneration. Novel approaches, which will provide a more comprehensive description of sleep and allow for large-scale sleep and circadian physiology studies in the home environment, hold promise for continued improvement of therapeutics for disturbances of sleep, circadian rhythms and waking performance
    corecore