242 research outputs found

    The MHC Gene Region of Murine Hosts Influences the Differential Tissue Tropism of Infecting Trypanosoma cruzi Strains

    Get PDF
    We have previously demonstrated that both parasite genetic variability and host genetic background were important in determining the differential tissue distribution of the Col1.7G2 and JG T. cruzi monoclonal strains after artificial infections in mice. We observed that the JG strain was most prevalent in hearts of mouse lineages with the MHC haplotype H-2d (BALB/c and DBA2), while Col1.7G2 was predominant in hearts from C57BL/6 mice, which have the H-2b haplotype. To assess whether the MHC gene region indeed influenced tissue tropism of T. cruzi, we used the same two parasite strains to infect C57BL/6 (H-2b) and C57BLKS/J (H-2d) mice; the latter strain results from the introgression of DBA2 MHC region into the C57BL/6 background. We also performed ex vivo infections of cardiac explants from four congenic mice lineages with the H-2b and H-2d haplotypes arranged in two different genetic backgrounds: C57BLKS/J (H-2d) versus C57BL/6 (H-2b) and BALB/c (H-2d) versus BALB/B10-H2b (H-2b). In agreement with our former observations, Col1.7G2 was predominant in hearts from C57BL/6 mice (H-2b), but we observed a clear predominance of the JG strain in hearts from C57BLKS/J animals (H-2d). In the ex vivo experiments Col1.7G2 also prevailed in explants from H-2b animals while no predominance of any of the strains was observed in H-2d mice explants, regardless of the genetic background. These observations clearly demonstrate that the MHC region influences the differential tissue distribution pattern of infecting T. cruzi strains, which by its turn may be in a human infection the determinant for the clinical forms of the Chagas disease

    Structure and Molecular Evolution of CDGSH Iron-Sulfur Domains

    Get PDF
    The recently discovered CDGSH iron-sulfur domains (CISDs) are classified into seven major types with a wide distribution throughout the three domains of life. The type 1 protein mitoNEET has been shown to fold into a dimer with the signature CDGSH motif binding to a [2Fe-2S] cluster. However, the structures of all other types of CISDs were unknown. Here we report the crystal structures of type 3, 4, and 6 CISDs determined at 1.5 Å, 1.8 Å and 1.15 Å resolution, respectively. The type 3 and 4 CISD each contain one CDGSH motif and adopt a dimeric structure. Although similar to each other, the two structures have permutated topologies, and both are distinct from the type 1 structure. The type 6 CISD contains tandem CDGSH motifs and adopts a monomeric structure with an internal pseudo dyad symmetry. All currently known CISD structures share dual iron-sulfur binding modules and a β-sandwich for either intermolecular or intramolecular dimerization. The iron-sulfur binding module, the β-strand N-terminal to the module and a proline motif are conserved among different type structures, but the dimerization module and the interface and orientation between the two iron-sulfur binding modules are divergent. Sequence analysis further shows resemblance between CISD types 4 and 7 and between 1 and 2. Our findings suggest that all CISDs share common ancestry and diverged into three primary folds with a characteristic phylogenetic distribution: a eukaryote-specific fold adopted by types 1 and 2 proteins, a prokaryote-specific fold adopted by types 3, 4 and 7 proteins, and a tandem-motif fold adopted by types 5 and 6 proteins. Our comprehensive structural, sequential and phylogenetic analysis provides significant insight into the assembly principles and evolutionary relationship of CISDs

    Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: implications for calcification-related chronic inflammatory diseases

    Get PDF
    Calcification-related chronic inflammatory diseases are multifactorial pathological processes, involving a complex interplay between inflammation and calcification events in a positive feed-back loop driving disease progression. Gla-rich protein (GRP) is a vitamin K dependent protein (VKDP) shown to function as a calcification inhibitor in cardiovascular and articular tissues, and proposed as an anti-inflammatory agent in chondrocytes and synoviocytes, acting as a new crosstalk factor between these two interconnected events in osteoarthritis. However, a possible function of GRP in the immune system has never been studied. Here we focused our investigation in the involvement of GRP in the cell inflammatory response mechanisms, using a combination of freshly isolated human leucocytes and undifferentiated/differentiated THP-1 cell line. Our results demonstrate that VKDPs such as GRP and matrix gla protein (MGP) are synthesized and gamma-carboxylated in the majority of human immune system cells either involved in innate or adaptive immune responses. Stimulation of THP-1 monocytes/macrophages with LPS or hydroxyapatite (HA) up-regulated GRP expression, and treatments with GRP or GRP-coated basic calcium phosphate crystals resulted in the down-regulation of mediators of inflammation and inflammatory cytokines, independently of the protein gamma-carboxylation status. Moreover, overexpression of GRP in THP-1 cells rescued the inflammation induced by LPS and HA, by down-regulation of the proinflammatory cytokines TNF alpha, IL-1 beta and NFkB. Interestingly, GRP was detected at protein and mRNA levels in extracellular vesicles released by macrophages, which may act as vehicles for extracellular trafficking and release. Our data indicate GRP as an endogenous mediator of inflammatory responses acting as an anti-inflammatory agent in monocytes/macrophages. We propose that in a context of chronic inflammation and calcification-related pathologies, GRP might act as a novel molecular mediator linking inflammation and calcification events, with potential therapeutic application.Portuguese Science and Technology Foundation (FCT) [PTDC/SAU-ORG/117266/2010, PTDC/BIM-MEC/1168/2012, UID/Multi/ 04326/2013]; FCT fellowships [SFRH/BPD/70277/2010, SFRH/BD/111824/2015

    Comprehensive analysis of correlation coefficients estimated from pooling heterogeneous microarray data

    Get PDF
    Background The synthesis of information across microarray studies has been performed by combining statistical results of individual studies (as in a mosaic), or by combining data from multiple studies into a large pool to be analyzed as a single data set (as in a melting pot of data). Specific issues relating to data heterogeneity across microarray studies, such as differences within and between labs or differences among experimental conditions, could lead to equivocal results in a melting pot approach. Results We applied statistical theory to determine the specific effect of different means and heteroskedasticity across 19 groups of microarray data on the sign and magnitude of gene-to-gene Pearson correlation coefficients obtained from the pool of 19 groups. We quantified the biases of the pooled coefficients and compared them to the biases of correlations estimated by an effect-size model. Mean differences across the 19 groups were the main factor determining the magnitude and sign of the pooled coefficients, which showed largest values of bias as they approached ±1. Only heteroskedasticity across the pool of 19 groups resulted in less efficient estimations of correlations than did a classical meta-analysis approach of combining correlation coefficients. These results were corroborated by simulation studies involving either mean differences or heteroskedasticity across a pool of N \u3e 2 groups. Conclusions The combination of statistical results is best suited for synthesizing the correlation between expression profiles of a gene pair across several microarray studies

    Addition of Bevacizumab to Chemotherapy in Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis

    Get PDF
    INTRODUCTION: Recently, studies have demonstrated that the addition of bevacizumab to chemotherapy could be associated with better outcomes in patients with advanced non-small cell lung cancer (NSCLC). However, the benefit seems to be dependent on the drugs used in the chemotherapy regimens. This systematic review evaluated the strength of data on efficacy of the addition of bevacizumab to chemotherapy in advanced NSCLC. METHODS: PubMed, EMBASE, and Cochrane databases were searched. Eligible studies were randomized clinical trials (RCTs) that evaluated chemotherapy with or without bevacizumab in patients with advanced NSCLC. The outcomes included overall survival (OS), progression-free survival (PFS), response rate (RR), toxicities and treatment related mortality. Hazard ratios (HR) and odds ratios (OR) were used for the meta-analysis and were expressed with 95% confidence intervals (CI). RESULTS: We included results reported from five RCTs, with a total of 2,252 patients included in the primary analysis, all of them using platinum-based chemotherapy regimens. Compared to chemotherapy alone, the addition of bevacizumab to chemotherapy resulted in a significant longer OS (HR 0.89; 95% CI 0.79 to 0.99; p = 0.04), longer PFS (HR 0.73; 95% CI 0.66 to 0.82; p<0.00001) and higher response rates (OR 2.34; 95% CI 1.89 to 2.89; p<0.00001). We found no heterogeneity between trials, in all comparisons. There was a slight increase in toxicities in bevacizumab group, as well as an increased rate of treatment-related mortality. CONCLUSIONS: The addition of bevacizumab to chemotherapy in patients with advanced NSCLC prolongs OS, PFS and RR. Considering the toxicities added, and the small absolute benefits found, bevacizumab plus platinum-based chemotherapy can be considered an option in selected patients with advanced NSCLC. However, risks and benefits should be discussed with patients before decision making
    • …
    corecore