168 research outputs found
Metabolic constraints on the evolution of antibiotic resistance
Despite our continuous improvement in understanding antibiotic resistance, the interplay between natural selection of resistance mutations and the environment remains unclear. To investigate the role of bacterial metabolism in constraining the evolution of antibiotic resistance, we evolved Escherichia coli growing on glycolytic or gluconeogenic carbon sources to the selective pressure of three different antibiotics. Profiling more than 500 intracellular and extracellular putative metabolites in 190 evolved populations revealed that carbon and energy metabolism strongly constrained the evolutionary trajectories, both in terms of speed and mode of resistance acquisition. To interpret and explore the space of metabolome changes, we developed a novel constraint‐based modeling approach using the concept of shadow prices. This analysis, together with genome resequencing of resistant populations, identified condition‐dependent compensatory mechanisms of antibiotic resistance, such as the shift from respiratory to fermentative metabolism of glucose upon overexpression of efflux pumps. Moreover, metabolome‐based predictions revealed emerging weaknesses in resistant strains, such as the hypersensitivity to fosfomycin of ampicillin‐resistant strains. Overall, resolving metabolic adaptation throughout antibiotic‐driven evolutionary trajectories opens new perspectives in the fight against emerging antibiotic resistance.ISSN:1744-429
The evolution of plasmid-carried antibiotic resistance
BACKGROUND: Antibiotic resistance represents a significant public health problem. When resistance genes are mobile, being carried on plasmids or phages, their spread can be greatly accelerated. Plasmids in particular have been implicated in the spread of antibiotic resistance genes. However, the selective pressures which favour plasmid-carried resistance genes have not been fully established. Here we address this issue with mathematical models of plasmid dynamics in response to different antibiotic treatment regimes. RESULTS: We show that transmission of plasmids is a key factor influencing plasmid-borne antibiotic resistance, but the dosage and interval between treatments is also important. Our results also hold when plasmids carrying the resistance gene are in competition with other plasmids that do not carry the resistance gene. By altering the interval between antibiotic treatments, and the dosage of antibiotic, we show that different treatment regimes can select for either plasmid-carried, or chromosome-carried, resistance. CONCLUSIONS: Our research addresses the effect of environmental variation on the evolution of plasmid-carried antibiotic resistance
Addition of Bevacizumab to Chemotherapy in Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis
INTRODUCTION: Recently, studies have demonstrated that the addition of bevacizumab to chemotherapy could be associated with better outcomes in patients with advanced non-small cell lung cancer (NSCLC). However, the benefit seems to be dependent on the drugs used in the chemotherapy regimens. This systematic review evaluated the strength of data on efficacy of the addition of bevacizumab to chemotherapy in advanced NSCLC. METHODS: PubMed, EMBASE, and Cochrane databases were searched. Eligible studies were randomized clinical trials (RCTs) that evaluated chemotherapy with or without bevacizumab in patients with advanced NSCLC. The outcomes included overall survival (OS), progression-free survival (PFS), response rate (RR), toxicities and treatment related mortality. Hazard ratios (HR) and odds ratios (OR) were used for the meta-analysis and were expressed with 95% confidence intervals (CI). RESULTS: We included results reported from five RCTs, with a total of 2,252 patients included in the primary analysis, all of them using platinum-based chemotherapy regimens. Compared to chemotherapy alone, the addition of bevacizumab to chemotherapy resulted in a significant longer OS (HR 0.89; 95% CI 0.79 to 0.99; p = 0.04), longer PFS (HR 0.73; 95% CI 0.66 to 0.82; p<0.00001) and higher response rates (OR 2.34; 95% CI 1.89 to 2.89; p<0.00001). We found no heterogeneity between trials, in all comparisons. There was a slight increase in toxicities in bevacizumab group, as well as an increased rate of treatment-related mortality. CONCLUSIONS: The addition of bevacizumab to chemotherapy in patients with advanced NSCLC prolongs OS, PFS and RR. Considering the toxicities added, and the small absolute benefits found, bevacizumab plus platinum-based chemotherapy can be considered an option in selected patients with advanced NSCLC. However, risks and benefits should be discussed with patients before decision making
Nasty Viruses, Costly Plasmids, Population Dynamics, and the Conditions for Establishing and Maintaining CRISPR-Mediated Adaptive Immunity in Bacteria
Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR) abound in the genomes of almost all archaebacteria and nearly half the eubacteria sequenced. Through a genetic interference mechanism, bacteria with CRISPR regions carrying copies of the DNA of previously encountered phage and plasmids abort the replication of phage and plasmids with these sequences. Thus it would seem that protection against infecting phage and plasmids is the selection pressure responsible for establishing and maintaining CRISPR in bacterial populations. But is it? To address this question and provide a framework and hypotheses for the experimental study of the ecology and evolution of CRISPR, I use mathematical models of the population dynamics of CRISPR-encoding bacteria with lytic phage and conjugative plasmids. The results of the numerical (computer simulation) analysis of the properties of these models with parameters in the ranges estimated for Escherichia coli and its phage and conjugative plasmids indicate: (1) In the presence of lytic phage there are broad conditions where bacteria with CRISPR-mediated immunity will have an advantage in competition with non-CRISPR bacteria with otherwise higher Malthusian fitness. (2) These conditions for the existence of CRISPR are narrower when there is envelope resistance to the phage. (3) While there are situations where CRISPR-mediated immunity can provide bacteria an advantage in competition with higher Malthusian fitness bacteria bearing deleterious conjugative plasmids, the conditions for this to obtain are relatively narrow and the intensity of selection favoring CRISPR weak. The parameters of these models can be independently estimated, the assumption behind their construction validated, and the hypotheses generated from the analysis of their properties tested in experimental populations of bacteria with lytic phage and conjugative plasmids. I suggest protocols for estimating these parameters and outline the design of experiments to evaluate the validity of these models and test these hypotheses
A phase I open-label study evaluating the cardiovascular safety of sorafenib in patients with advanced cancer
Purpose: To characterize the cardiovascular profile of sorafenib, a multitargeted kinase inhibitor, in patients with advanced cancer. Methods: Fifty-three patients with advanced cancer received oral sorafenib 400 mg bid in continuous 28-day cycles in this open-label study. Left ventricular ejection fraction (LVEF) was evaluated using multigated acquisition scanning at baseline and after 2 and 4 cycles of sorafenib. QT/QTc interval on the electrocardiograph (ECG) was measured in triplicate with a Holter 12-lead ECG at baseline and after 1 cycle of sorafenib. Heart rate (HR) and blood pressure (BP) were obtained in duplicate at baseline and after 1 and 4 cycles of sorafenib. Plasma pharmacokinetic data were obtained for sorafenib and its 3 main metabolites after 1 and 4 cycles of sorafenib. Results: LVEF (SD) mean change from baseline was -0.8 (8.6) LVEF(%) after 2 cycles (n=31) and -1.2 7.8) LVEF(%) after 4 cycles of sorafenib (n=24). The QT/QTc mean changes from baseline observed at maximum sorafenib concentrations () after 1 cycle (n=31) were small (QTcB: 4.2 ms; QTcF: 9.0 ms). Mean changes observed after 1 cycle in BP (n=31) and HR (n=30) at maximum sorafenib concentrations () were moderate (up to 11.7 mm Hg and -6.6 bpm, respectively). No correlation was found between the AUC and () of sorafenib and its main metabolites and any cardiovascular parameters. Conclusions: The effects of sorafenib on changes in QT/QTc interval on the ECG, LVEF, BP, and HR were modest and unlikely to be of clinical significance in the setting of advanced cancer treatment
- …