3,281 research outputs found

    Maternal nutritional status, C1 metabolism and offspring DNA methylation: a review of current evidence in human subjects.

    Get PDF
    : Evidence is growing for the long-term effects of environmental factors during early-life on later disease susceptibility. It is believed that epigenetic mechanisms (changes in gene function not mediated by DNA sequence alteration), particularly DNA methylation, play a role in these processes. This paper reviews the current state of knowledge of the involvement of C1 metabolism and methyl donors and cofactors in maternal diet-induced DNA methylation changes in utero as an epigenetic mechanism. Methyl groups for DNA methylation are mostly derived from the diet and supplied through C1 metabolism by way of choline, betaine, methionine or folate, with involvement of riboflavin and vitamins B6 and B12 as cofactors. Mouse models have shown that epigenetic features, for example DNA methylation, can be altered by periconceptional nutritional interventions such as folate supplementation, thereby changing offspring phenotype. Evidence of early nutrient-induced epigenetic change in human subjects is scant, but it is known that during pregnancy C1 metabolism has to cope with high fetal demands for folate and choline needed for neural tube closure and normal development. Retrospective studies investigating the effect of famine or season during pregnancy indicate that variation in early environmental exposure in utero leads to differences in DNA methylation of offspring. This may affect gene expression in the offspring. Further research is needed to examine the real impact of maternal nutrient availability on DNA methylation in the developing fetus

    Haptoglobin genotype, haemoglobin and malaria in Gambian children

    Get PDF

    An observation-based constraint on permafrost loss as a function of global warming

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordPermafrost, which covers 15 million km 2 of the land surface, is one of the components of the Earth system that is most sensitive to warming. Loss of permafrost would radically change high-latitude hydrology and biogeochemical cycling, and could therefore provide very significant feedbacks on climate change. The latest climate models all predict warming of high-latitude soils and thus thawing of permafrost under future climate change, but with widely varying magnitudes of permafrost thaw. Here we show that in each of the models, their present-day spatial distribution of permafrost and air temperature can be used to infer the sensitivity of permafrost to future global warming. Using the same approach for the observed permafrost distribution and air temperature, we estimate a sensitivity of permafrost area loss to global mean warming at stabilization of million km 2 °C â '1 (1σ confidence), which is around 20% higher than previous studies. Our method facilitates an assessment for COP21 climate change targets: if the climate is stabilized at 2 °C above pre-industrial levels, we estimate that the permafrost area would eventually be reduced by over 40%. Stabilizing at 1.5 °C rather than 2 °C would save approximately 2 million km 2 of permafrost.European Union Seventh Framework ProgrammeNatural Environment Research Council (NERC)Swedish Research CouncilResearch Council of NorwayUK DECC/Defra Met Office HadleyEuropean Unio

    The American lifestyle-induced obesity syndrome diet in male and female rodents recapitulates the clinical and transcriptomic features of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

    Get PDF
    The pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the progression to nonalcoholic steatohepatitis (NASH) and increased risk of hepatocellular carcinoma remain poorly understood. Additionally, there is increasing recognition of the extrahepatic manifestations associated with NAFLD and NASH. We demonstrate that intervention with the American lifestyle-induced obesity syndrome (ALIOS) diet in male and female mice recapitulates many of the clinical and transcriptomic features of human NAFLD and NASH. Male and female C57BL/6N mice were fed either normal chow (NC) or ALIOS from 11 to 52 wk and underwent comprehensive metabolic analysis throughout the duration of the study. From 26 wk, ALIOS-fed mice developed features of hepatic steatosis, inflammation, and fibrosis. ALIOS-fed mice also had an increased incidence of hepatic tumors at 52 wk compared with those fed NC. Hepatic transcriptomic analysis revealed alterations in multiple genes associated with inflammation and tissue repair in ALIOS-fed mice. Ingenuity Pathway Analysis confirmed dysregulation of metabolic pathways as well as those associated with liver disease and cancer. In parallel the development of a robust hepatic phenotype, ALIOS-fed mice displayed many of the extrahepatic manifestations of NAFLD, including hyperlipidemia, increased fat mass, sarcopenia, and insulin resistance. The ALIOS diet in mice recapitulates many of the clinical features of NAFLD and, therefore, represents a robust and reproducible model for investigating the pathogenesis of NAFLD and its progression.NEW & NOTEWORTHY Nonalcoholic fatty liver disease (NAFLD) affects 30% of the general population and can progress to nonalcoholic steatohepatitis (NASH) and potentially hepatocellular carcinoma. Preclinical models rely on mouse models that often display hepatic characteristics of NAFLD but rarely progress to NASH and seldom depict the multisystem effects of the disease. We have conducted comprehensive metabolic analysis of both male and female mice consuming a Western diet of trans fats and sugar, focusing on both their hepatic phenotype and extrahepatic manifestations

    Measurement error in a multi-level analysis of air pollution and health: a simulation study.

    Get PDF
    BACKGROUND: Spatio-temporal models are increasingly being used to predict exposure to ambient outdoor air pollution at high spatial resolution for inclusion in epidemiological analyses of air pollution and health. Measurement error in these predictions can nevertheless have impacts on health effect estimation. Using statistical simulation we aim to investigate the effects of such error within a multi-level model analysis of long and short-term pollutant exposure and health. METHODS: Our study was based on a theoretical sample of 1000 geographical sites within Greater London. Simulations of "true" site-specific daily mean and 5-year mean NO2 and PM10 concentrations, incorporating both temporal variation and spatial covariance, were informed by an analysis of daily measurements over the period 2009-2013 from fixed location urban background monitors in the London area. In the context of a multi-level single-pollutant Poisson regression analysis of mortality, we investigated scenarios in which we specified: the Pearson correlation between modelled and "true" data and the ratio of their variances (model versus "true") and assumed these parameters were the same spatially and temporally. RESULTS: In general, health effect estimates associated with both long and short-term exposure were biased towards the null with the level of bias increasing to over 60% as the correlation coefficient decreased from 0.9 to 0.5 and the variance ratio increased from 0.5 to 2. However, for a combination of high correlation (0.9) and small variance ratio (0.5) non-trivial bias (> 25%) away from the null was observed. Standard errors of health effect estimates, though unaffected by changes in the correlation coefficient, appeared to be attenuated for variance ratios > 1 but inflated for variance ratios < 1. CONCLUSION: While our findings suggest that in most cases modelling errors result in attenuation of the effect estimate towards the null, in some situations a non-trivial bias away from the null may occur. The magnitude and direction of bias appears to depend on the relationship between modelled and "true" data in terms of their correlation and the ratio of their variances. These factors should be taken into account when assessing the validity of modelled air pollution predictions for use in complex epidemiological models

    Evidence from bioinformatics, expression and inhibition studies of phosphoinositide-3 kinase signalling in Giardia intestinalis

    Get PDF
    BACKGROUND: Giardia intestinalis is a parasitic protozoan and major cause of diarrhoeal disease. Disease transmission is dependent on the ability of the parasite to differentiate back and forth between an intestine-colonising trophozoite and an environmentally-resistant infective cyst. Our current understanding of the intracellular signalling mechanisms that regulate parasite replication and differentiation is limited, yet such information could suggest new methods of disease control. Phosphoinositide-3 kinase (PI3K) signalling pathways have a central involvement in many vital eukaryotic processes, such as regulation of cell growth, intracellular membrane trafficking and cell motility. Here we present evidence for the existence of functional PI3K intracellular signalling pathways in G. intestinalis. RESULTS: We have identified and characterised two genes, Gipi3k1 and Gipi3k2, which encode putative PI3Ks. Both genes are expressed in trophozoites and encysting cells, suggesting a possible role of GiPI3K1 and GiPI3K2 in regulating giardial growth and differentiation. Extensive nucleotide and amino acid sequence characterisation predicts that both encoded PI3Ks are functional as indicated by the presence of highly conserved structural domains and essential catalytic residues. The inhibitory effect of the PI3K inhibitor LY294002 on trophozoite proliferation also supports their functionality. Phylogenetic analysis supports the identity of GiPI3K1 as a Class I isoform and GiPI3K2 as a Class III isoform. In addition, giardial genes encoding putative homologues of phosphoinositide-metabolising enzymes such as PTEN, MTM, PIPkin and PI 5-phosphatase as well as downstream effectors with phosphoinositide-binding domains have been identified, placing GiPI3K1 and GiPI3K2 in a broader signalling context. Compared with twenty-six PI3Ks from other organisms, GiPI3K1 and GiPI3K2 are unique in that they contain large insertions within their highly conserved kinase domains. The function of these insertions is unknown; however we show here that they are not intron-derived and would probably not hinder substrate binding. These insertions may represent a plausible drug target. CONCLUSION: G. intestinalis encodes and expresses two putative PI3Ks, at least one of which appears to be required during normal parasite proliferation. The identification of Class I and Class III but not Class II isoforms suggests that both extracellularly-initiated signalling (Class I-regulated) and intracellular vesicle trafficking (Class III-regulated) might be controlled by PI3Ks in G. intestinalis. The presence of genes encoding putative homologues of phosphoinositide-metabolising enzymes and downstream effectors in the G. intestinalis genome further suggests that the overall architecture of PI3K signalling may be comparable with pathways present in other better-studied organisms

    Whole cell proteome regulation by microRNAs captured in a pulsed SILAC mass spectrometry approach

    Get PDF
    Since gene expression is controlled on many different levels in a cell, capturing a comprehensive snapshot of all regulatory processes is a difficult task. One possibility to monitor effective changes within a cell is to directly quantify changes in protein synthesis, which reflects the accumulative impact of regulatory mechanisms on gene expression. Pulsed stable isotope labeling by amino acids in cell culture (pSILAC) has been shown to be a viable method to investigate de novo protein synthesis on a proteome-wide scale (Schwanhausser et al., Proteomics 9:205-209, 2009; Selbach et al., Nature 455:58-63, 2008). One application of pSILAC is to study the regulation of protein expression by microRNAs. Here, we describe how pSILAC in conjunction with shotgun mass spectrometry can assess differences in the protein profile between cells transfected with a microRNA and non-transfected cells

    Social and ecological effectiveness of large marine protected areas

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Large marine protected areas are increasingly being established to meet global conservation targets and promote sustainable use of resources. Although the factors affecting the performance of small-scale marine protected areas are relatively well studied, there is no such body of knowledge for large marine protected areas. We conducted a global meta-analysis to systematically investigate social, ecological, and governance characteristics of successful large marine protected areas with respect to several social and ecological outcomes. We included all large (>10,000km2), implemented (>5 years of active management) marine protected areas that had sufficient data for analysis, for a total of twelve cases. We used the Social-Ecological Systems Meta-Analysis Database, and a consistent protocol for using secondary data and key informant interviews, to code proxies for fisheries, ecosystem health, and the wellbeing of user groups (mainly fishers). We tested four sets of hypotheses derived from the literature on smallscale marine protected areas and common-pool resources: (i) the attributes of species and ecosystems to be managed in the marine protected area, (ii) adherence to principles for designing small-scale marine protected areas, (iii) adherence to the design principles for common-pool resource management, and (iv) stakeholder participation. We found varying levels of support for these hypotheses. Improved fisheries were associated with older marine protected areas, and higher levels of enforcement. Declining fisheries were associated with several ecological and economic factors, including low productivity, high mobility, and high market value. High levels of participation were correlated with improvements in wellbeing and ecosystem health trends. Overall, this study constitutes an important first step in identifying factors affecting social wellbeing and ecological performance of large marine protected areas.NCB thanks SSHRC and NSERC. CMB was supported by the Price Fellowship and Stanford University’s Emmett Interdisciplinary Program in Environmental Resources. GE is supported by a SSHRC postdoctoral fellowship. We gratefully acknowledge participants of our key informant interviewsThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this record
    corecore