23,856 research outputs found
Ferrimagnetism in the organic polymeric Hubbard model: Quantum Monte Carlo simulation
The ground-state properties of organic polymers are studied by means of the quantum Monte Carlo simulation. The polymer doped by transition-metal impurities at every other radical site of the chain is described by the quasi-one-dimensional polymeric Hubbard chain. The topological structure of the chain possesses a flat-band structure of the energy band. The spin-spin correlation function and the static magnetic susceptibility are investigated in the case of half filling. Our analysis shows that the on-site Coulomb repulsions in the chain and/or in the radical lead to the coexistence of ferromagnetic and antiferromagnetic order, i.e., the ferrimagnetic order. The on-site Coulomb repulsion (U d) of electrons at the radicals plays a more significant role in stabilizing the ferromagnetic order than that (U) on the chain does, while U has a stronger impact on the antiferromagnetic order. © 1999 The American Physical Society.published_or_final_versio
Berry phase and its induced charge and spin currents in a ring of a double-exchange system
A ring of double-exchange system is investigated to explore the Berry phase acquired by the interplay of localized and conduction electrons. The competition between the double-exchange ferromagnetism and the superexchange antiferromagnetic coupling from the localized electrons leads to a phase transition from a ferromagnetic state to a spin spiral state. The spin spiral state acquires a nonzero Berry phase along the ring, and induces both charge and spin currents simultaneously. It is predicted that both the Aharonov-Bohm effect and Aharonov-Cashier effect will be exhibited spontaneously in the system. © 1999 The American Physical Society.published_or_final_versio
Jet Trimming
Initial state radiation, multiple interactions, and event pileup can
contaminate jets and degrade event reconstruction. Here we introduce a
procedure, jet trimming, designed to mitigate these sources of contamination in
jets initiated by light partons. This procedure is complimentary to existing
methods developed for boosted heavy particles. We find that jet trimming can
achieve significant improvements in event reconstruction, especially at high
energy/luminosity hadron colliders like the LHC.Comment: 20 pages, 11 figures, 3 tables - Minor changes to text/figure
Keyword-Based Delegable Proofs of Storage
Cloud users (clients) with limited storage capacity at their end can
outsource bulk data to the cloud storage server. A client can later access her
data by downloading the required data files. However, a large fraction of the
data files the client outsources to the server is often archival in nature that
the client uses for backup purposes and accesses less frequently. An untrusted
server can thus delete some of these archival data files in order to save some
space (and allocate the same to other clients) without being detected by the
client (data owner). Proofs of storage enable the client to audit her data
files uploaded to the server in order to ensure the integrity of those files.
In this work, we introduce one type of (selective) proofs of storage that we
call keyword-based delegable proofs of storage, where the client wants to audit
all her data files containing a specific keyword (e.g., "important"). Moreover,
it satisfies the notion of public verifiability where the client can delegate
the auditing task to a third-party auditor who audits the set of files
corresponding to the keyword on behalf of the client. We formally define the
security of a keyword-based delegable proof-of-storage protocol. We construct
such a protocol based on an existing proof-of-storage scheme and analyze the
security of our protocol. We argue that the techniques we use can be applied
atop any existing publicly verifiable proof-of-storage scheme for static data.
Finally, we discuss the efficiency of our construction.Comment: A preliminary version of this work has been published in
International Conference on Information Security Practice and Experience
(ISPEC 2018
Efficient mining of frequent item sets on large uncertain databases
The data handled in emerging applications like location-based services, sensor monitoring systems, and data integration, are often inexact in nature. In this paper, we study the important problem of extracting frequent item sets from a large uncertain database, interpreted under the Possible World Semantics (PWS). This issue is technically challenging, since an uncertain database contains an exponential number of possible worlds. By observing that the mining process can be modeled as a Poisson binomial distribution, we develop an approximate algorithm, which can efficiently and accurately discover frequent item sets in a large uncertain database. We also study the important issue of maintaining the mining result for a database that is evolving (e.g., by inserting a tuple). Specifically, we propose incremental mining algorithms, which enable Probabilistic Frequent Item set (PFI) results to be refreshed. This reduces the need of re-executing the whole mining algorithm on the new database, which is often more expensive and unnecessary. We examine how an existing algorithm that extracts exact item sets, as well as our approximate algorithm, can support incremental mining. All our approaches support both tuple and attribute uncertainty, which are two common uncertain database models. We also perform extensive evaluation on real and synthetic data sets to validate our approaches. © 1989-2012 IEEE.published_or_final_versio
Agricultural origins and the isotopic identity of domestication in northern China
Stable isotope biochemistry (δ 13C and δ 15N) and radiocarbon dating of ancient human and animal bone document 2 distinct phases of plant and animal domestication at the Dadiwan site in northwest China. The first was brief and nonintensive: at various times between 7900 and 7200 calendar years before present (calBP) people harvested and stored enough broomcorn millet (Panicum miliaceum) to provision themselves and their hunting dogs (Canis sp.) throughout the year. The second, much more intensive phase was in place by 5900 calBP: during this time both broomcorn and foxtail (Setaria viridis spp. italica) millets were cultivated and made significant contributions to the diets of people, dogs, and pigs (Sus sp.). The systems represented in both phases developed elsewhere: the earlier, low-intensity domestic relationship emerged with hunter-gatherers in the arid north, while the more intensive, later one evolved further east and arrived at Dadiwan with the Yangshao Neolithic. The stable isotope methodology used here is probably the best means of detecting the symbiotic human-plantanimal linkages that develop during the very earliest phases of domestication and is thus applicable to the areas where these connections first emerged and are critical to explaining how and why agriculture began in East Asia
Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor
High-temperature (high-Tc) superconductivity in the copper oxides arises from
electron or hole doping of their antiferromagnetic (AF) insulating parent
compounds. The evolution of the AF phase with doping and its spatial
coexistence with superconductivity are governed by the nature of charge and
spin correlations and provide clues to the mechanism of high-Tc
superconductivity. Here we use a combined neutron scattering and scanning
tunneling spectroscopy (STS) to study the Tc evolution of electron-doped
superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing
process. We find that spin excitations detected by neutron scattering have two
distinct modes that evolve with Tc in a remarkably similar fashion to the
electron tunneling modes in STS. These results demonstrate that
antiferromagnetism and superconductivity compete locally and coexist spatially
on nanometer length scales, and the dominant electron-boson coupling at low
energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include
Recommended from our members
Electrostatic Turbulence and Debye-scale Structures in Collisionless Shocks
We present analysis of more than 100 large-amplitude bipolar electrostatic structures in a quasi-perpendicular supercritical Earth's bow shock crossing, measured by the Magnetospheric Multiscale spacecraft. The occurrence of the bipolar structures is shown to be tightly correlated with magnetic field gradients in the shock transition region. The bipolar structures have negative electrostatic potentials and spatial scales of a few Debye lengths. The bipolar structures propagate highly oblique to the shock normal with velocities (in the plasma rest frame) of the order of the ion-acoustic velocity. We argue that the bipolar structures are ion phase space holes produced by the two-stream instability between incoming and reflected ions. This is the first identification of the ion two-stream instability in collisionless shocks
Oral tolerance to cancer can be abrogated by T regulatory cell inhibition
Oral administration of tumour cells induces an immune hypo-responsiveness known as oral tolerance. We have previously shown that oral tolerance to a cancer is tumour antigen specific, non-cross-reactive and confers a tumour growth advantage. We investigated the utilisation of regulatory T cell (Treg) depletion on oral tolerance to a cancer and its ability to control tumour growth. Balb/C mice were gavage fed homogenised tumour tissue – JBS fibrosarcoma (to induce oral tolerance to a cancer), or PBS as control. Growth of subcutaneous JBS tumours were measured; splenic tissue excised and flow cytometry used to quantify and compare systemic Tregs and T effector (Teff) cell populations. Prior to and/or following tumour feeding, mice were intraperitoneally administered anti-CD25, to inactivate systemic Tregs, or given isotype antibody as a control. Mice which were orally tolerised prior to subcutaneous tumour induction, displayed significantly higher systemic Treg levels (14% vs 6%) and faster tumour growth rates than controls (p<0.05). Complete regression of tumours were only seen after Treg inactivation and occurred in all groups - this was not inhibited by tumour feeding. The cure rates for Treg inactivation were 60% during tolerisation, 75% during tumour growth and 100% during inactivation for both tolerisation and tumour growth. Depletion of Tregs gave rise to an increased number of Teff cells. Treg depletion post-tolerisation and post-tumour induction led to the complete regression of all tumours on tumour bearing mice. Oral administration of tumour tissue, confers a tumour growth advantage and is accompanied by an increase in systemic Treg levels. The administration of anti-CD25 Ab decreased Treg numbers and caused an increase in Teffs. Most notably Treg cell inhibition overcame established oral tolerance with consequent tumor regression, especially relevant to foregut cancers where oral tolerance is likely to be induced by the shedding of tumour tissue into the gut
Three-body interactions with cold polar molecules
We show that polar molecules driven by microwave fields give naturally rise
to strong three-body interactions, while the two-particle interaction can be
independently controlled and even switched off. The derivation of these
effective interaction potentials is based on a microscopic understanding of the
underlying molecular physics, and follows from a well controlled and systematic
expansion into many-body interaction terms. For molecules trapped in an optical
lattice, we show that these interaction potentials give rise to Hubbard models
with strong nearest-neighbor two-body and three-body interaction. As an
illustration, we study the one-dimensional Bose-Hubbard model with dominant
three-body interaction and derive its phase diagram.Comment: 8 pages, 4 figure
- …
