
Title Efficient mining of frequent item sets on large uncertain
databases

Author(s) Wang, L; Cheung, DWL; Cheng, R; Lee, SD; Yang, XS

Citation IEEE Transactions on Knowledge & Data Engineering, 2012, v.
24 n. 12, p. 2170-2183

Issued Date 2012

URL http://hdl.handle.net/10722/138034

Rights IEEE Transactions on Knowledge & Data Engineering. Copyright
© IEEE.

Efficient Mining of Frequent Item Sets on
Large Uncertain Databases

Liang Wang, David Wai-Lok Cheung, Reynold Cheng, Member, IEEE, Sau Dan Lee, and Xuan S. Yang

Abstract—The data handled in emerging applications like location-based services, sensor monitoring systems, and data integration,

are often inexact in nature. In this paper, we study the important problem of extracting frequent item sets from a large uncertain

database, interpreted under the Possible World Semantics (PWS). This issue is technically challenging, since an uncertain database

contains an exponential number of possible worlds. By observing that the mining process can be modeled as a Poisson binomial

distribution, we develop an approximate algorithm, which can efficiently and accurately discover frequent item sets in a large uncertain

database. We also study the important issue of maintaining the mining result for a database that is evolving (e.g., by inserting a tuple).

Specifically, we propose incremental mining algorithms, which enable Probabilistic Frequent Item set (PFI) results to be refreshed.

This reduces the need of re-executing the whole mining algorithm on the new database, which is often more expensive and

unnecessary. We examine how an existing algorithm that extracts exact item sets, as well as our approximate algorithm, can support

incremental mining. All our approaches support both tuple and attribute uncertainty, which are two common uncertain database

models. We also perform extensive evaluation on real and synthetic data sets to validate our approaches.

Index Terms—Frequent item sets, uncertain data set, approximate algorithm, incremental mining

Ç

1 INTRODUCTION

THE databases used in many important and novel
applications are often uncertain. For example, the

locations of users obtained through RFID and GPS systems
are not precise due to measurement errors [22], [28]. As
another example, data collected from sensors in habitat
monitoring systems (e.g., temperature and humidity) are
noisy [17]. Customer purchase behaviors, as captured in
supermarket basket databases, contain statistical informa-
tion for predicting what a customer will buy in the future
[3], [6]. Integration and record linkage tools also associate
confidence values to the output tuples according to
the quality of matching [16]. In structured information
extractors, confidence values are appended to rules for
extracting patterns from unstructured data [31]. To meet the
increasing application needs of handling a large amount of
uncertain data, uncertain databases have been recently
developed [10], [16], [19], [20], [27].

Fig. 1 shows an online marketplace application, which
carries probabilistic information. Particularly, the purchase
behavior details of customers Jack and Mary are recorded.
The value associated with each item represents the chance
that a customer may buy that item in the near future. These
probability values may be obtained by analyzing the users’
browsing histories. For instance, if Jack visited the market-
place 10 times in the previous week, out of which video
products were clicked five times, the marketplace may
conclude that Jack has a 50 percent chance of buying videos.

This attribute-uncertainty model, which is well studied in the
literature [6], [10], [20], [28], associates confidence values
with data attributes. It is also used to model location and
sensor uncertainty in GPS and RFID systems.

To interpret uncertain databases, the Possible World
Semantics (PWS) is often used [16]. Conceptually, a database
is viewed as a set of deterministic instances (called possible
worlds), each of which contains a set of tuples. A possible
world w for Fig. 1 consists of two tuples, {food} and {clothing},
for Jack and Mary, respectively. Since {food} occurs with a
probability of ð1� 1

2Þ � 1 ¼ 1
2 , and {clothing} has a probability

of 1� ð1� 1
3Þ � ð1� 2

3Þ ¼ 2
9 , the probability that w exists is

1
2� 2

9 , or 1
9 . Any query evaluation algorithm for an uncertain

database has to be correct under PWS. That is, the results
produced by the algorithm should be the same as if the query
is evaluated on every possible world [16].

Although PWS is intuitive and useful, querying or mining
under this notion is costly. This is because an uncertain
database has an exponential number of possible worlds. For
example, the database in Fig. 1 has 23 ¼ 8 possible worlds.
Performing data mining under PWS can, thus, be technically
challenging. In fact, the mining of uncertain data has
recently attracted research attention [3]. For example, in
[23], efficient clustering algorithms were developed for
uncertain objects; in [21] and [32], naı̈ve Bayes and decision
tree classifiers designed for uncertain data were studied.
Here, we develop scalable algorithms for finding frequent
item sets (i.e., sets of attribute values that appear together
frequently in tuples) for uncertain databases. Our algorithms
can be applied to two important uncertainty models:
attribute uncertainty (e.g., Fig. 1); and tuple uncertainty, where
every tuple is associated with a probability to indicate
whether it exists [15], [16], [19], [27], [34].

The frequent item sets discovered from uncertain data
are naturally probabilistic, in order to reflect the confidence
placed on the mining results. Fig. 2 shows a Probabilistic

2170 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

. The authors are with the Department of Computer Science, The University
of Hong Kong, Room 301, Chow Yei Ching Building, Pokfulam Road,
Hong Kong. E-mail: {lwang, dcheung, ckcheng, sdlee, xyang2}@cs.hku.hk.

Manuscript received 27 Nov. 2010; revised 20 Apr. 2011; accepted 25 May
2011; published online 19 July 2011.
Recommended for acceptance by H. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-11-0635.
Digital Object Identifier no. 10.1109/TKDE.2011.165.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Frequent Item set (PFI) extracted from Fig. 1. A PFI is a set of
attribute values that occurs frequently with a sufficiently
high probability. In Fig. 2, the support probability mass
function (s-pmf) for the PFI {video} is shown. This is the pmf
for the number of tuples (or support count) that contain an
item set. Under PWS, a database induces a set of possible
worlds, each giving a (different) support count for a given
item set. Hence, the support of a frequent item set is
described by a pmf. In Fig. 2, if we consider all possible
worlds where item set {video} occurs twice, the correspond-
ing probability is 1

6 .
A simple way of finding PFIs is to mine frequent patterns

from every possible world, and then record the probabilities
of the occurrences of these patterns. This is impractical, due
to the exponential number of possible worlds. To remedy
this, some algorithms have been recently developed to
successfully retrieve PFIs without instantiating all possible
worlds [6], [30], [35]. These algorithms can verify whether an
item set is a PFI inOðn2Þ time (wheren is the number of tuples
contained in the database). However, our experimental
results reveal that they can require a long time to complete
(e.g., with a 300k real data set, the dynamic programming
algorithm in [6] needs 30.1 hours to find all PFIs). We observe
that the s-pmf of a PFI can be captured by a Poisson binomial
distribution, for both attribute- and tuple-uncertain data. We
make use of this intuition to propose a method for
approximating a PFI’s pmf with a Poisson distribution,
which can be efficiently and accurately estimated. This model-
based algorithm can verify a PFI inOðnÞ time, and is thus more
suitable for large databases. We demonstrate how our
algorithm can be used to mine threshold-based PFIs, whose
probabilities of being true frequent item sets are larger than
some user-defined threshold [6]. Our algorithm only needs
9.2 seconds to find all PFIs [33], which is four orders of
magnitudes faster than the method in [6].

Mining evolving databases. We also study the impor-
tant problem of maintaining mining results for changing, or
evolving, databases. The type of evolving data that we
address here is about the appending, or insertion of a batch
of tuples to the database. Tuple insertion is common in the
applications that we consider. For example, a GPS system
may have to handle location values due to the registration
of a new user; in an online marketplace application,
information about new purchase transactions may be
appended to the database for further analysis. Fig. 3 shows

a new database, which is the result of appending the
purchase information of Tony, a new customer, to
the database in Fig. 1. Notice that these new tuples may
induce changes to the mining result. For example, if the
new database (Fig. 3) is considered, the s-pmf of the PFI
{video} (Fig. 2) becomes the one shown in Fig. 4. Hence, we
need to derive the PFIs for the new database. A straightfor-
ward way of refreshing the mining results is to re-evaluate
the whole mining algorithm on the new database. This can
be costly, however, when new tuples are appended to the
database at different time instants. In fact, if the new
database Dþ is similar to its older version, D, it is likely that
most of the PFIs extracted from D remain valid for Dþ.
Based on this intuition, we develop incremental mining
algorithms, which use the PFIs of D to derive the PFIs of Dþ,
instead of finding them from scratch. In this paper, we
propose an incremental mining algorithm for the method
studied in [6], which discovers exact PFIs. We also examine
how our model-based algorithm, which discovers approx-
imate PFIs, can be extended to handle evolving data. As our
experiments show, when the change of the database is
small, running our incremental mining algorithms on Dþ is
much faster than finding PFIs on Dþ from scratch. In an
experiment on a real data set, our model-based, incremental
mining algorithm addresses a fivefold performance im-
provement over its nonincremental counterpart.

To summarize, we develop a model-based algorithm,
which can reduce the amount of effort of scanning the
database for mining threshold-based PFIs. We also develop
two incremental mining algorithms, for extracting exact and
approximate PFIs. All our algorithms can support both
attribute and tuple uncertainty models. We study the time
complexity of our approaches. Experiments on both real
and synthetic data sets reveal that our methods significantly
improve the performance of PFI discovery, with a high
degree of accuracy.

The rest of the paper is organized as follows: in Section 2,
we review the related works. Section 3 defines the problems
to be studied. Section 4 describes efficient and accurate
methods for computing s-pmf. In Section 5, we present our
algorithm for discovering threshold-based PFIs. The exact
and approximate algorithms for maintaining PFIs on evol-
ving databases are, respectively, presented in Sections 6 and
7. Section 8 reports our experimental results. We conclude in
Section 9.

WANG ET AL.: EFFICIENT MINING OF FREQUENT ITEM SETS ON LARGE UNCERTAIN DATABASES 2171

Fig. 2. s-pmf of PFI {video} from Fig. 1.

Fig. 3. The new database after inserting new customer information.

Fig. 4. s-pmf of PFI {video} from Fig. 3.

Fig. 1. Illustrating an uncertain database.

2 RELATED WORK

Mining frequent item sets is an important problem in data
mining, and is also the first step of deriving association
rules [4]. Hence, many efficient item set mining algorithms
(e.g., Apriori [4] and FP-growth [18]) have been proposed.
While these algorithms work well for databases with
precise values, it is not clear how they can be used to mine
probabilistic data. Here we develop algorithms for extract-
ing frequent item sets from uncertain databases. Although
our algorithms are developed based on the Apriori frame-
work, they can be considered for supporting other
algorithms (e.g., FP-growth) for handling uncertain data.

For uncertain databases, Aggarwal et al. [2] and Chui et al.
[14] developed efficient frequent pattern mining algorithms
based on the expected support counts of the patterns.
However, Bernecker et al. [6], Sun et al. [30], and Yiu et al.
[35] found that the use of expected support may render
important patterns missing. Hence, they proposed to
compute the probability that a pattern is frequent, and
introduced the notion of PFI. In [6], dynamic-programming-
based solutions were developed to retrieve PFIs from
attribute-uncertain databases. However, their algorithms
compute exact probabilities, and verify that an item set is a
PFI inOðn2Þ time. Our model-based algorithms avoid the use
of dynamic programming, and are able to verify a PFI much
faster (in OðnÞ time). In [35], approximate algorithms for
deriving threshold-based PFIs from tuple-uncertain data
streams were developed. While Zhang et al. [35] only
considered the extraction of singletons (i.e., sets of single
items), our solution discovers patterns with more than one
item. Recently, Sun et al. [30] developed an exact threshold-
based PFI mining algorithm. However, it does not support
attribute-uncertain data considered in this paper. In a
preliminary version of this paper [33], we examined a
model-based approach for mining PFIs. Here, we study
how this algorithm can be extended to support the mining of
evolving data.

Other works on the retrieval of frequent patterns from
imprecise data include: [9], which studied approximate
frequent patterns on noisy data; [24], which examined
association rules on fuzzy sets; and [26], which proposed
the notion of a “vague association rule.” However, none of
these solutions are developed on the uncertainty models
studied here.

For evolving databases. A few incremental mining
algorithms that work for exact data have been developed.
For example, in [11], the Fast Update algorithm (FUP) was
proposed to efficiently maintain frequent item sets, for a
database to which new tuples are inserted. Our incremental

mining framework is inspired by FUP. In [12], the FUP2

algorithm was developed to handle both addition and
deletion of tuples. ZIGZAG [1] also examines the efficient
maintenance of maximal frequent item sets for databases
that are constantly changing. In [13], a data structure, called
CATS Tree, was introduced to maintain frequent item sets
in evolving databases. Another structure, called CanTree
[25], arranges tree nodes in an order that is not affected by
changes in item frequency. The data structure is used to
support mining on a changing database. To our best
knowledge, maintaining frequent item sets in evolving
uncertain databases has not been examined before. We
propose novel incremental mining algorithms for both exact
and approximate PFI discovery. Our algorithms can also
support attribute and tuple uncertainty models.

Table 1 summarizes the major work done in PFI mining.
Here, “Static Algorithms” refer to algorithms that do not
handle database changes. Hence, any change in the database
necessitates a complete execution of these algorithms.

3 PROBLEM DEFINITION

We now discuss the uncertainty models used in this paper,
in Section 3.1. The problem of mining threshold-based PFIs
is then described in Section 3.2.

3.1 Attribute and Tuple Uncertainty

Let V be a set of items. In the attribute uncertainty model

[6], [10], [20], [28], each attribute value carries some
uncertain information. Here, we adopt the following variant
[6]: a database D contains n tuples, or transactions. Each
transaction, tj is associated with a set of items taken from V .
Each item v 2 V exists in tj with an existential probability
Prðv 2 tjÞ 2 ð0; 1�, which denotes the chance that v belongs
to tj. In Fig. 1, for instance, the existential probability of
video in tJack is PrðvideoJackÞ ¼ 1=2. This model can also be
used to describe uncertainty in binary attributes. For
instance, the item video can be considered as an attribute,
whose value is one, for Jack’s tuple, with probability 1

2 , in
tuple tJack.

Under the Possible World Semantics, D generates a set of
possible worldsW. Table 2 lists all possible worlds for Fig. 1.
Each world wi 2 W, which consists of a subset of attributes
from each transaction, occurs with probability PrðwiÞ. For
example, Prðw2Þ is the product of: 1) the probability that
Jack purchases food but not video (equal to 1

2); and 2) the
probability that Mary buys clothing and video only (equal to
1
9). As shown in Table 2, the sum of possible world

2172 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

TABLE 1
Our Contributions (Marked ½p�)

TABLE 2
Possible Worlds of Fig. 1

probabilities is one, and the number of possible worlds is
exponentially large. Our goal is to discover frequent
patterns without expanding D into possible worlds.

In the tuple uncertainty model, each tuple or transaction
is associated with a probability value. We assume the
following variant [15], [34]: each transaction tj 2 D is
associated with a set of items and an existential probability
PrðtjÞ 2 ð0; 1�, which indicates that tj exists in D with
probability PrðtjÞ. Again, the number of possible worlds for
this model is exponentially large. Table 3 summarizes the
symbols used in this paper.

3.2 Probabilistic Frequent Item Sets

Let I � V be a set of items, or an item set. The support of I,
denoted by sðIÞ, is the number of transactions in which I
appears in a transaction database [4]. In precise databases,
sðIÞ is a single value. This is no longer true in uncertain
databases, because in different possible worlds, sðIÞ can
have different values. Let Sðwj; IÞ be the support count of I
in possible world wj. Then, the probability that sðIÞ has a
value of i, denoted by PrIðiÞ, is

PrIðiÞ ¼
X

wj2W;Sðwj;IÞ¼i
PrðwjÞ: ð1Þ

Hence, PrIðiÞði ¼ 1; . . . ; nÞ form a probability mass function
(pmf) of sðIÞ, where n is the size of D. We call PrI the
support pmf (or s-pmf) of I. In Table 2, Prvideoð2Þ ¼
Prðw6Þ þ Prðw8Þ ¼ 1

6 , since sðIÞ ¼ 2 in possible worlds w6

and w8. Fig. 2 shows the s-pmf of {video}.
Now, let minsup 2 ð0; 1� be a percentage value, which is

generally used to define minimal support in a deterministic

database. An item set I is said to be frequent in a database D

if sðIÞ � mscðDÞ, where mscðDÞ ¼ minsup� n is called the

minimal support count of D [4]. For uncertain databases,

the frequentness probability of I, denoted by PrfreqðIÞ, is the

probability that an item set is frequent [6]. Notice that

PrfreqðIÞ can be expressed as

PrfreqðIÞ ¼
X

i�mscðDÞ
PrIðiÞ: ð2Þ

In Fig. 2, i f minsup ¼ 1, then mscðDÞ ¼ 2. Thus,

PrfreqðfvideogÞ ¼ Prfvideogð1Þ þ Prfvideogð2Þ ¼ 2
3 .

Using frequentness probabilities, we can determine

whether an item set I is frequent. In this paper, we adopt

the definition in [6]: I is a Threshold-based PFI if its

frequentness probability is larger than some user-defined

threshold [6]. Formally, given a real value minprob 2 ð0; 1�,
I is a threshold-based PFI, if PrfreqðIÞ � minprob. We call

minprob the frequentness probability threshold.
Here, we would like to mention the following theorem,

which was discussed in [6].

Theorem 1 (Antimonotonicity). Let S and I be two item sets.

If S � I, then PrfreqðSÞ � PrfreqðIÞ.

This theorem will be used in our discussions.
We derive efficient s-pmf computation methods in

Section 4. Then, Section 5 examines how these methods

facilitate efficiency discovery of approximate threshold-

based PFIs. We examine the maintenance of exact and

approximate PFIs on evolving data, in Sections 6 and 7.

4 EVALUATING S-PMF

From the last section, we can see that the s-pmf sðIÞ of item
set I plays an important role in determining whether I is a
PFI. However, directly computing sðIÞ (e.g., using the
dynamic programming approaches of [6] and [35]) can be
expensive. We now investigate an alternative way of
computing sðIÞ. In Section 4.1, we study some statistical
properties of sðIÞ. Section 4.2 exploits these results by
approximating sðIÞ in a computationally efficient manner.

4.1 Statistical Properties of s-pmf

An interesting observation about sðIÞ is that it is essentially

the number of successful Poisson trials [29]. To explain, we

let XI
j be a random variable, which is equal to one if I is a

subset of the items associated with transaction tj (i.e.,

I � tj), or zero otherwise. Notice that PrðI � tjÞ can be

easily calculated in our uncertainty models.

. For attribute-uncertainty,

PrðItjÞ ¼
Y
v2I

Prðv 2 tjÞ: ð3Þ

. For tuple-uncertainty,

PrðI � tjÞ ¼
PrðtjÞ; if I � tj; ð4aÞ
0; otherwise: ð4bÞ

�

WANG ET AL.: EFFICIENT MINING OF FREQUENT ITEM SETS ON LARGE UNCERTAIN DATABASES 2173

TABLE 3
Summary of Notations

Given a database of size n, each I is associated with

random variablesXI
1 ; X

I
2 ; . . . ; XI

n. In both uncertainty models

considered in this paper, all tuples are independent. There-

fore, these n variables are independent, and they represent n

Poisson trials. Moreover, XI ¼
Pn

j¼1 X
I
j follows a Poisson

binomial distribution.
Next, we observe an important relationship between XI

and PrIðiÞ (i.e., the probability that the support of I is i)

PrIðiÞ ¼ PrðXI ¼ iÞ: ð5Þ

This is simply because XI is the number of times that I

exists in the database. Hence, the s-pmf of I, i.e., PrIðiÞ is

the pmf of XI , a Poisson binomial distribution.
Using (5), we can rewrite (2), which computes the

frequentness probability of I, as

PrfreqðIÞ ¼
X

i�mscðDÞ
PrðXI ¼ iÞ ð6Þ

¼ PrðXI � mscðDÞÞ: ð7Þ

Therefore, if the cumulative distribution function (cdf) of

XI is known, PrfreqðIÞ can also be evaluated. Next, we

discuss an approach to approximate this cdf, in order to

compute PrfreqðIÞ efficiently.

4.2 Approximating s-pmf

From (7), we can express PrfreqðIÞ as

PrfreqðIÞ ¼ 1� PrðXI � mscðDÞ � 1Þ: ð8Þ

For notational convenience, let pIj be PrðI � tjÞ. Then, the

expected value ofXI inD, denoted by�I , can be computed by

�I ¼
Xn
j¼1

pIj : ð9Þ

Since a Poisson binomial distribution can be well approxi-

mated by a Poisson distribution [8], (8) can be written as

PrfreqðIÞ � 1� F ðmscðDÞ � 1; �IÞ; ð10Þ

where F is the cdf of the Poisson distribution with mean �I ,

i.e., F ðmscðDÞ � 1; �IÞ ¼ 1� �ðmscðDÞ;�I Þ
ðmscðDÞ�1Þ! , expressed using the

incomplete gamma function �ðs; xÞ ¼
R1
x ts�1e�tdt. Empiri-

cal results (see Appendix A which can be found on the

Computer Society Digital Library at http://doi.

ieeecomputersociety.org/10.1109/TKDE.2011.165) show

that the errors introduced by this approximation is small

in practice.
To estimate PrfreqðIÞ, we can first compute �I by

scanning D once and summing up pIj ’s for all tuples tj in

D. Then, F ðmscðDÞ � 1; �IÞ is evaluated, and (10) is used to

approximate PrfreqðIÞ.
We have also observed an important property of the

frequentness probability:

Theorem 2. PrfreqðIÞ, if approximated by (10), increases

monotonically with �I .

Proof. The cdf of a Poisson distribution, F ði; �Þ, can be

written as

F ði; �Þ ¼ �ðiþ 1; �Þ
i!

¼
R1
� tðiþ1Þ�1e�tdt

i!
:

Since minsup is fixed and independent of �, let us
examine the partial derivative w.r.t. �

@F ði; �Þ
@�

¼ @

@�

R1
� tðiþ1Þ�1e�tdt

i!

 !

¼ 1

i!

@

@�

Z 1
�

tie�tdt

� �

¼ 1

i!
ð��ie��Þ

¼ �fði; �Þ � 0:

Thus, the cdf of the Poisson distribution F ði; �Þ is
monotonically decreasing w.r.t. �, when i is fixed.
Consequently, 1� F ði� 1; �Þ increases monotonically
with �. Theorem 2 follows immediately by substituting
i ¼ mscðDÞ. tu

Intuitively, Theorem 2 states that the higher value of �I ,
the higher is the chance that I is a PFI. Next, we will illustrate
how this theorem avoids the costly computations of F , and
improves the efficiency of finding threshold-based PFIs.

5 MINING THRESHOLD-BASED PFIs

Can we quickly determine whether an item set I is a
threshold-based PFI? Answering this question is crucial,
since in typical PFI mining algorithms (e.g., [6]), candidate
item sets are first generated, before they are tested on
whether they are PFI’s. In Section 5.1, we develop a simple
method of testing whether I is a threshold-based PFI,
without computing its frequentness probability. We then
enhance this method in Section 5.2. We demonstrate an
adaptation of these techniques in an existing PFI-mining
algorithm, in Section 5.3.

5.1 PFI Testing

Given the values of minsup and minprob, we can test
whether I is a threshold-based PFI, in three steps.

Step 1. Find a real number �m satisfying the equation:

minprob ¼ 1� F ðmscðDÞ � 1; �mÞ: ð11Þ

The above equation can be solved efficiently by employing
numerical methods, thanks to Theorem 2.

Step 2. Use (9) to compute �I . Notice that the database D
has to be scanned once.

Step 3. If �I � �m, we conclude that I is a PFI. Otherwise,
I must not be a PFI.

To understand why this works, first notice that the
right side of (11) is the same as that of (10), an expression
of frequentness probability. Essentially, Step 1 finds out
the value of �m that corresponds to the frequentness
probability threshold (i.e., minprob). In Steps 2 and 3,
if �I � �m, Theorem 2 allows us to deduce that
PrfreqðIÞ � minprob. Hence, these steps together can test
whether an item set is a PFI.

In order to verify whether I is a PFI, once �m is found, we
do not have to evaluate PrfreqðIÞ. Instead, we compute �I in
Step 2, which can be done in OðnÞ time. This is a more

2174 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

scalable method compared with solutions in [6] and [35],
which evaluate PrfreqðIÞ in Oðn2Þ time. Next, we study how
this method can be further improved.

5.2 Improving the PFI Testing Process

In Step 2 of the last section, D has to be scanned once to
obtain �I , for every item set I. This can be costly if D is
large, and if many item sets need to be tested. For example,
in the Apriori algorithm [6], many candidate item sets are
generated first before testing whether they are PFIs. We
now explain how the PFI testing can still be carried out
without scanning the whole database.

Let �Il ¼
Pl

j¼1 pj, where l 2 ð0; n�. Essentially, �Il is the
“partial value” of �I , which is obtained after scanning l

tuples. Notice that �In ¼ �I . Suppose that �m has been
obtained from (11), we first claim the following.

Lemma 1. Let i 2 ð0; n�. If �Ii � �m, then I is a threshold-based
PFI.

Proof. Notice that �Ii monotonically increases with i. If there
exists a value of i such that �Ii � �m, we must have
�I ¼ �In � �Ii � �m, implying that I is a PFI. tu

Using Lemma 1, a PFI can be verified by scanning only a
part of the database. We next show the following.

Lemma 2. If I is a threshold-based PFI, then

�In�i � �m � i 8i 2 ð0; b�mc�: ð12Þ

Proof. Let Dl be a set of tuples ft1; . . . ; tlg. Then,

�I ¼
Xn
j¼1

PrðI � tjÞ;

�Il ¼
Xl
j¼1

PrðI � tjÞ:

Since PrðI � tjÞ 2 ½0; 1�, based on the above equations,
we have

i � �I � �In�i: ð13Þ

If item set I is a PFI, then �I � �m. In addition,
�In�i � 0. Therefore,

i � �I � �In�i � �m � �In�i for 0 < i � b�mc
:	 	 �In�i � �m � i for 0 < i � b�mc:

ut

This lemma leads to the following corollary.

Corollary 1. An item set I cannot be a PFI if there exists i 2
ð0; b�mc� such that

�In�i < �m � i: ð14Þ

We use an example to illustrate Corollary 1. Suppose that
�m ¼ 1:1 for the database in Fig. 1. Also, let I ¼ {clothing,
video}. Using Corollary 1, we do not have to scan the whole
database. Instead, only the tuple tJack needs to be read. This
is because

�I1 ¼ 0 < 1:1� 1 ¼ 0:1: ð15Þ

Since (14) is satisfied, we confirm that I is not a PFI without
scanning the whole database.

We use the above results to improve the speed of the PFI
testing process. Specifically, after a tuple has been scanned,
we check whether Lemma 1 is satisfied; if so, we
immediately conclude that I is a PFI. After scanning n�
b�mc or more tuples, we examine whether I is not a PFI, by
using Corollary 1. These testing procedures continue until
the whole database is scanned, yielding �I . Then, we
execute Step 3 (Section 5.1) to test whether I is a PFI.

5.3 Case Study: The Apriori Algorithm

The testing techniques just mentioned are not associated
with any specific threshold-based PFI mining algorithms.
Moreover, these methods support both attribute- and tuple-
uncertainty models. Hence, they can be easily adopted by
existing algorithms. We now explain how to incorporate
our techniques to enhance the Apriori [6] algorithm, an
important PFI mining algorithms.

The resulting procedure (Algorithm 1) uses the “bottom-
up” framework of the Apriori: starting from k ¼ 1, size-k
PFIs (called k-PFIs) are first generated. Then, using
Theorem 1, size-ðkþ 1Þ candidate item sets are derived
from the k-PFIs, based on which the ðkþ 1Þ-PFIs are found.
The process goes on with larger k, until no larger candidate
item sets can be discovered.

Algorithm 1. Apriori-based PFI Mining

The main difference of Algorithm 1 compared with that
of Apriori [6] is that all steps that require frequentness
probability computation are replaced by our PFI testing
methods. In particular, Algorithm 1 first computes �m (Line
2). Then, for each candidate item set I generated on Lines 3
and 17, we scan D and compute its �Ii (Line 10). If Lemma 1
is satisfied, then I is put to the result (Lines 11-13).
However, if Corollary 1 is satisfied, I is pruned from the
candidate item sets (Lines 14-16). This process goes on until
no more candidates item sets are found.

Complexity. In Algorithm 1, each candidate item needs
OðnÞ time to test whether it is a PFI. This is much faster than
the Apriori [6], which verifies a PFI in Oðn2Þ time.
Moreover, since D is scanned once for all k-PFI candidates
Ck, at most a total of n tuples is retrieved for each Ck

WANG ET AL.: EFFICIENT MINING OF FREQUENT ITEM SETS ON LARGE UNCERTAIN DATABASES 2175

(instead of jCkj 	 n). The space complexity is OðjCkjÞ for each
candidate set Ck, in order to maintain �I for each candidate.

Next, we examine how to maintain PFIs in a database
that is constantly evolving.

6 EXACT INCREMENTAL MINING

We now examine how to efficiently maintain a set of PFIs in
an evolving database, where new tuples, or transactions, are
constantly appended to it. We assume that every tuple has a
timestamp attribute, which indicates the time that it is
created. This timestamp is not used for mining; it is only
used to differentiate new tuples from existing ones. Let D
be the “old” database that contains n tuples, and d be a delta
database of n0 tuples, whose timestamps are larger than
those of tuples in D. Let Dþ be a “new” database, which is a
concatenation of the tuples in D and d, and has a size of
nþ ¼ nþ n0. Given the set of PFIs and their s-pmfs in D, our
goal is to discover PFIs on Dþ, under the same minsup and
minprob values used to mine the PFIs of D. We use sDBðIÞ
and PrDBfreqðIÞ to respectively denote the support count and
the frequentness probability of item set I in some database
DB, where DB is any of fD; d;Dþg.

Before we go on, we would like to remark that the
incremental mining problem described above can be treated
as a special case of stream mining, which refers to the
maintenance of mining results for stream data. Particularly,
we can view the database d as the arrival of jdj data units
from a stream source. Moreover, we assume that the sliding
window initially contains D, which then expands to
incorporate new stream units. Mining Dþ is then equivalent
to updating the mining results for the arrival of jdj stream
units. In Section 8.3, we study an adaptation of a stream
algorithm in [35] for use in incremental mining.

A simple way of obtaining PFIs from Dþ is to simply
rerun a PFI-mining algorithm on it. However, this approach
is not very economical, since 1) running a PFI algorithm on
a large database is not trivial; and 2) the same algorithm has
to be frequently executed if a lot of update activities occur.
In fact, if only a few tuples in d are appended to D, it may
not be necessary to compute all PFIs on Dþ from scratch.
This is because the PFIs found in Dþ should not be very
different from those discovered in D. Based on this
intuition, we design an incremental mining algorithm that
finds PFIs in Dþ, without rerunning a complete PFI
algorithm. This algorithm works the best when the size of
d is very small compared with that of D; nevertheless, it
works with any size of d. We next discuss the framework of
our solution, which discovers exact PFIs in Dþ, based on the
PFIs found in D. We extend this solution to discover
approximate PFIs in Section 7. Table 3 summarizes the
symbols used in these sections.

6.1 Algorithm uFUP
The design of our uncertain Fast UPdate algorithm (or
uFUP), is inspired by FUP [11]. That algorithm maintains
frequent item set results in an evolving database, whose
attribute values are exact. The uFUP algorithm extracts
frequent item sets in an “Apriori” fashion: it utilizes a
bottom-up approach, where ðkþ 1Þ-PFIs are generated from
k-PFIs. Moreover, it supports both attribute and tuple
uncertainty models. As shown in Fig. 5, uFUP undergoes
three phases in the kth iteration, starting from k ¼ 1.

1. Candidate generation. In the first iteration, size-1
item sets that can be 1-PFIs are obtained, using the
PFIs discovered from D, as well as the delta database
d. In subsequent iterations, this phase produces size-
ðkþ 1Þ candidate item sets, based on the k-PFIs
found in the previous iteration. If no candidates are
found, uFUP halts.

2. Candidate pruning. With the aid of d and the PFIs
found from D, this phase filters the candidate item
sets that must not be a PFI.

3. PFI testing. For item sets that cannot be pruned, they
are tested to see whether they are the true PFIs. This
involves the use of database Dþ, as well as the s-
pmfs of PFIs on D.

Notice that in Phases 1 and 2, only d and the PFIs of D are
needed. Since these pieces of information are relatively small
in size (compared with D or Dþ), they are usually not very
expensive to evaluate. Phase 3 involves deriving the s-pmfs
of item sets, with the use of Dþ, and is thus more expensive
than other phases. If Phase 2 successfully removes a lot of
candidates from consideration, the cost of executing Phase 3
can be reduced. This solution framework can also be used to
extract approximate PFIs, which will be revisited in Section 7.

The above discussion is formalized in Algorithm 2, which
uses the databases D and d, as well as the set of exact PFIs
FD collected from D (e.g., using the method of [6]). The
output of uFUP is a set Fþ of PFIs for Dþ, where
Fþ ¼ fFþ1 ; Fþ2 ; . . . ; Fþmg, and Fþk is the set of k-PFIs for Dþ.
Let Cþk be a set of size-k candidates found from Dþ. Initially,
k ¼ 1. Line 3 generates Cþ1 (Phase 1). In the kth iteration
(Lines 5-11), we first remove candidate item sets that cannot
be k-PFIs, from Cþk (Line 5; Phase 2). If Cþk is not empty, we
perform testing on these candidates, in order to find out the
true k-PFIs (i.e., Fþk), in Line 7 (Phase 3). Line 10 then
generates size (k+1)-candidate item sets by using the k-PFIs.
The whole process is repeated until no more candidates are
found. Line 12 returns the set of PFIs of different sizes.

Algorithm 2. uFUP

2176 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

Fig. 5. Solution framework for uFUP and uFUPapp.

We next discuss the details of Phase 1, in Section 6.2.

Then, Sections 6.3 and 6.4 present Phases 2 and 3,

respectively. We discuss other issues of uFUP in Section 6.5.

6.2 Phase 1: Candidate Generation

We consider two cases of generating size-k candidate item

sets in this phase: 1) k ¼ 1 and 2) k > 1.
Case 1: k ¼ 1. We invokeGenerateSingleton, in Line 3

of Algorithm 2. This subroutine simply returns the union of

all single items in d and the 1-PFIs ofD (i.e., FD
1), as the set of

size-1 candidate item sets (Cþ1).
To understand why GenerateSingleton covers all

possible size-1 candidates, first notice that if an item set is a

1-PFI in D, it should naturally be considered as a candidate

item set in Dþ. We then claim that it suffices to include all

single items of d to Cþ1 , using the following lemma.

Lemma 3. Suppose item set I is not a PFI of D. If I does not exist

in any tuple of d, I is not a PFI of Dþ.

Proof. Since I is not a PFI in D, we have

PrDfreqðIÞ ¼ Pr sDðIÞ � mscðDÞ
� �

< minprob: ð16Þ

If I does not exist in d, its s-pmf will not be changed in

Dþ. Thus,

Pr
�
sD

þðIÞ � mscðDÞ
�
¼ Pr sDðIÞ � mscðDÞ

� �
: ð17Þ

Moreover, since mscðDþÞ � mscðDÞ, we obtain

Pr
�
sD

þðIÞ � mscðDþÞ
�
� Pr

�
sD

þðIÞ � mscðDÞ
�
: ð18Þ

Using Inequalities 16, 18 and (17), we can deduce that

PrDþfreqðIÞ < minprob. Thus, I cannot be a PFI in Dþ. tu
Using Lemma 3, if a singleton I is not a 1-PFI in D, and

does not appear in d, then I must not be a 1-PFI in Dþ. Thus,

by including FD
1 and all singletons in d as members of Cþ1 ,

we will not miss any true size-1 candidate for Dþ.
Case 2: k > 1. We use the typical Apriori-gen method

[4] to generate size-k candidates from ðk� 1Þ-PFIs. Parti-

cularly, subroutine GenerateCandidate (Line 10 in

Algorithm 2) performs the following: for any two ðk� 1Þ-
PFIs, I and I 0, if there is only one item that differentiates I

from I 0, a candidate item set I [I 0 is produced. Using

Lemma 1 (antimonotonicity), we can easily show that

GenerateCandidate produces all size-k candidates.
Next, we examine how some of the candidates generated

in this phase can be pruned.

6.3 Phase 2: Candidate Pruning

The goal of this phase is to remove infrequent item sets

from a set of size-k candidates. In Line 5 of Algorithm 2,

Prune is used to remove item sets from Cþk . To understand

how Prune works, we first present the following.

Lemma 4. Any item set I in Dþ satisfies

Pr
�
sD

þðIÞ < mscðDþÞ
�

� Pr sDðIÞ < mscðDÞ
� �

� Pr sdðIÞ � mscðdÞ
� �

:
ð19Þ

This lemma, which relates the s-pmf of I in Dþ to those

in D and d, is used to prove Lemma 5. The detailed proof of

Lemma 4 can be found in Appendix B, available in the

online supplemental material.
Let the number of tuples that contain I in d be cntdðIÞ.

We use the following lemma for candidate pruning.

Lemma 5. For any item set I 62 FD, if cntdðIÞ � mscðdÞ, then

I 62 Fþ.

Proof. Since I is not a PFI in D, we have

Pr sDðIÞ < mscðDÞ
� �

> 1�minprob: ð20Þ

If cntdðIÞ � mscðdÞ, then

Pr sdðIÞ � mscðdÞ
� �

¼ 1: ð21Þ

Using Lemma 4, as well as (20) and (21), we have

Pr
�
sD

þðIÞ � mscðDþÞ
�

¼ 1� Pr
�
sD

þðIÞ < mscðDþÞ
�

� 1� Pr sDðIÞ < mscðDÞ
� �

� Pr sdðIÞ � mscðdÞ
� �

< 1� ð1�minprobÞ ¼ minprob:

Thus, I is not a PFI in Dþ. tu
Given an item set I 2 Cþk , Prune first checks if I is a

frequent item set in D (i.e., I 2 FD
k). If this is false, and if

cntdðIÞ does not exceed mscðdÞ, then I cannot be a PFI in Dþ

(Lemma 5), and I can be pruned. Notice that Prune does

not test I on Dþ, which can be expensive. Instead, it only

computes cntdðIÞ, which can be obtained by scanning d

once. If n0, the size of d, is small, then getting cntdðIÞ incurs

a low cost. In this phase, pruning an item set not in FD
k costs

Oðn0Þ times.

6.4 Phase 3: PFI Testing

Given a set of candidate item sets inCþk not pruned in Phase 2,

the objective of this phase is to verify whether these

candidates are really k-PFIs. In particular, the subroutine

Test (Line 7, Algorithm 2) is invoked to compute the s-pmfs

of these item sets on Dþ. Once this is obtained, we can easily

verify whether these candidates are true k-PFIs, as discussed

in the previous sections.
Although the approach of [6] can be used to compute the

s-pmf of an item set I, this can be expensive, especially if the

size of Dþ is large. However, if we know that I is a PFI in D,

as well as its s-pmf in D, it is possible to derive the s-pmf of

I in Dþ without computing it from scratch. The main idea is

to modify the approach of [6], as outlined below: for every

tuple tj scanned from d, we evaluate the probability

PrðI � tjÞ, and then use this to update the s-pmf of I

through the use of the dynamic programming method in

[6]. This process goes on, until all tuples in d are examined.

Hence, the s-pmf of any item set I 2 FD
k can be obtained by

scanning d once. This method is effective, since if I is a PFI

of D, it is highly likely that I will also be a PFI of Dþ.

Although the time complexity of this phase is still upper

bounded by the algorithm in [6] (i.e., Oðnþ2Þ), its perfor-

mance is practically improved, since the s-pmfs of some

candidates can be obtained faster.

WANG ET AL.: EFFICIENT MINING OF FREQUENT ITEM SETS ON LARGE UNCERTAIN DATABASES 2177

6.5 Discussions

The uFUP algorithm supports both tuple and attribute
uncertainty models. First, the solutions presented in Phases 1
and 2 are not designed for any specific uncertainty model.
Second, Phase 3 computes the s-pmf of an item set I by
using the probability value PrðI � tjÞ. As explained before,
this quantity can be obtained through (3) (for attribute
uncertainty) and (4) (for tuple uncertainty). Hence, uFUP
can be used in both models.

Our experiments reveal that for mining exact PFIs on
evolving data, uFUP outperforms the algorithm mentioned
in [6]. However, testing an item set in uFUP still requires
Oðnþ2Þ time. Moreover, Phase 3 needs the s-pmf informa-
tion of all PFIs found in D. Since storing a s-pmf needs a
cost of OðnÞ, the space cost consumed by Phase 3 can be
enormous if there are many PFIs in D. We next examine
how these problems can be alleviated.

7 APPROXIMATE INCREMENTAL MINING

As discussed before, our model-based algorithm enables
PFIs to be accurately and quickly discovered. We now
investigate how to extend it to retrieve PFIs from evolving
data. We call this extension the approximate uncertain Fast
UPdate algorithm (or uFUPapp in short).

The uFUPapp algorithm adopts the framework of uFUP, as
illustrated in Fig. 5. Algorithm 3 describes the details. In
Line 3, the candidates in Cþ1 are generated (Phase 1). In
Lines 5-7, the parameter values used for pruning are
computed. (We will explain this later.) In the kth iteration
(Lines 8-15), some candidates in the set Cþk are pruned
(Phase 2; Line 9), while the remaining ones are tested (Phase
3; Line 11). In Line 14, size-ðkþ 1Þ candidates are generated
by using the k-PFIs found. When no more candidates are left
(Line 8), the algorithm outputs Fþ, which contains PFIs of
different sizes (Line 16).

Algorithm 3. uFUPapp

Phase 1 of uFUPapp is the same as that of uFUP;
particularly, the details of GenerateSingleton and
GenerateCandidate can be found in Section 6.2. In the
rest of this section, we focus on Phase 2 (candidate pruning)
and Phase 3 (PFI testing). Sections 7.1 and 7.2 present the
details of these phases. We address other issues of uFUPapp

in Section 7.3.

7.1 Phase 2: Candidate Pruning

To facilitate our discussions, let �IðDBÞ be the expected
value of random variable XI in DB, where DB is any of the
database D, d, or Dþ. Also, let �mðDBÞ be a real value that
satisfies (11) in DB. We first present the following theorem.

Theorem 3. Consider an item set I that is not a PFI in D.
Then I is a PFI in Dþ only if �IðdÞ > ��m, where
��m ¼ �mðDþÞ � �mðDÞ.

Proof. Since I is not a PFI, we have

�IðDÞ < �mðDÞ; i:e:; �mðDÞ � �IðDÞ > 0:

From (9), we have

�IðDþÞ ¼
Xnþ
j¼1

pIj ¼
Xn
j¼1

pIj þ
Xnþ

j¼ðnþ1Þ
pIj ¼ �IðDÞ þ �IðdÞ: ð22Þ

So, if I is a PFI in Dþ, then

�IðDþÞ � �mðDþÞ

�IðDÞ þ �IðdÞ � ��m þ �mðDÞ

�IðdÞ � ��m � �mðDÞ � �IðDÞ > 0

Therefore; �IðdÞ > ��m.

ut

This theorem is used by Phase 2. In Algorithm 3, lines 5-7
compute the value of ��m. (The subroutine MinExpSup

evaluates (11)). Then, in Line 9, subroutine Prune uses
Theorem 3 to remove candidates that are not PFIs in D, and
whose �IðdÞ values do not exceed ��m. Since Prune needs to
scan d once to obtain �IðdÞ, the cost of pruning an item set is
Oðn0Þ.

7.2 Phase 3: PFI Testing

The objective of this phase is to verify whether an item set in
Cþk is a true k-PFI. In particular, subroutine Test (Line 11,
Algorithm 3) is invoked to perform this task: for each item
set I, it first computes �IðDþÞ. If this value is not less than
�mðDþÞ, I is judged to be a PFI of Dþ. The rationale behind
this process can be found in Section 5.1.

A simple way of computing �IðDþÞ is to scan the tuples
in Dþ once. This can be costly, if many candidates need to
be tested. Similar to the Phase 3 of uFUP, it is possible to
improve the performance of this process, by using the PFI
information of D. Suppose we know the �IðDÞ value of an
item set I, which is a PFI of D. We first evaluate �IðdÞ, by
scanning d once. The value of �IðDþÞ can be then obtained
by adding these two values together (based on (22)). If d is
small, scanning tuples in d is fast, and so computing �IðDþÞ
can be more efficient. In uFUPapp, we save the �IðDÞ values
of all the PFIs discovered in D, so that they can later be used
to derive PFIs for Dþ.

7.3 Discussions

Since the model-based approach supports both tuple and
attribute uncertainty (Section 4), the uFUPapp algorithm,
which adopts the model-based approach, can also be used
in both data models. We also remark that uFUPapp is
generally faster than uFUP, since less time is needed to test

2178 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

approximate PFIs than exact PFIs. Moreover, in Phase 3,
while uFUP has to store the complete s-pmf for every PFI
found from D, uFUPapp only stores a single value, �IðDÞ, for
every PFI I. Hence, uFUPapp needs less space than uFUP. Our
experiments, described next, show that uFUPapp is highly
efficient and accurate.

Tuple deletion. We now discuss briefly how tuple
deletion can be handled in evolving databases. Suppose that
a set of tuples � � D is removed fromD, resulting in database
D�. Inspired by Cheung et al. [12], we notice that an analogy
to Theorem 3 can be deduced, with a similar proof.

Theorem 4. Consider an item set I that is not a PFI in D.
Then, I is a PFI in D� only if �Ið�Þ < �þm, where
�þm ¼ �mðDÞ � �mðD�Þ.

This can be used to handle tuple deletions efficiently, in a
way analogous to the application of Theorem 3 in algorithm
uFUPapp.

8 RESULTS

We now present the experimental results on two data sets.
The first one, called accidents, comes from the Frequent Item
set Mining (FIMI) Data Set Repository.1 This data set is
obtained from the National Institute of Statistics (NIS) for the
region of Flanders (Belgium), for the period of 1991-2000.
The data are obtained from the “Belgian Analysis Form for
Traffic Accidents,” which are filled out by a police officer for
each traffic accident occurring on a public road in Belgium.
The data set contains 3,40,184 accident records, with a total
of 572 attribute values. On average, each record has
45 attributes. We use the first 10k tuples as our default data
set. The default value of minsup is 20 percent. To test the
incremental mining algorithms, we use the first 10k tuples as
the old database D, and the subsequent tuples as the delta
database d. The default size of d is 5 percent of D.

The second data set, called T10I4D100k, is produced by
the IBM data generator.2 The data set has a size n of 100k
transactions. On average, each transaction has 10 items, and
a frequent item set has four items. Since this data set is
relatively sparse, we set minsup to 1 percent. For the
experiments on incremental mining algorithms, we use the
first 90k tuples as D, and the remaining 10k tuples as d.

For both data sets, we consider both attribute and tuple
uncertainty models. For attribute uncertainty, the existential
probability of each attribute is drawn from a Gaussian
distribution with mean 0.5 and standard deviation 0.125.
This same distribution is also used to characterize the
existential probability of each tuple, for the tuple uncer-
tainty model. The default value of minprob is 0.4. In the
results presented, minsup is shown as a percentage of the
data set size n. Notice that when the values of minsup or
minprob are large, no PFIs can be returned; we do not show
the results for these values. Our experiments were carried
out on the Windows XP operating system, on a machine
with a 2.66 GHz Intel Core 2 Duo processor and 2 GB
memory. The programs were written in C and compiled
with Microsoft Visual Studio 2008.

We first present the results on the real data set. Section 8.1
describes the results for mining threshold-based PFIs for
attribute-uncertain data. In Section 8.2, we present the
results for incremental mining algorithms. We summarize
the results for tuple-uncertain data and synthetic data, in
Section 8.3.

8.1 Results on Threshold-Based PFI Mining

We now compare the performance of three PFI mining
algorithms mentioned in this paper: 1) DP, the Apriori
algorithm used in [6]; 2) MB, the modified Apriori algorithm
that employs the PFI testing method (Section 5.1); and 3)MBP,
the algorithm that uses the improved version of the PFI
testing method (Section 5.2).

1. Accuracy. Since MB approximates s-pmf by a Poisson
distribution, we first examine its accuracy with respect to
DP, which yields PFIs based on exact frequentness prob-
abilities. Here, we use the standard recall and precision
measures [7], which quantify the number of negatives and
false positives. Specifically, let FDP be the set of PFIs
generated by DP, and FMB be the set of PFIs produced by
MB. The recall and the precision of MB, relative to DP, are
defined as follows:

recall ¼ jFDP \ FMBj
jFDP j

; ð22Þ

precision ¼ jFDP \ FMBj
jFMBj

: ð23Þ

In these formulas, both recall and precision have values
between 0 and 1. Also, a higher value reflects a better
accuracy.

Table 4 shows the recall and the precision of MB, for a
wide range of minsup, n, and minprob values. As we can
see, the precision and recall values are always higher than
98 percent. Hence, the PFIs returned by MB are highly
similar to those returned by DP. Since MBP returns the same
PFIs as MB, it is also highly accurate.

2. MB versus DP. Next, we compare the performance (in
log scale) of MB and DP, in Fig. 6a. Observe that MBis about
two orders of magnitude faster than DP, over a wide range
of minsup. This is because MB does not compute exact

WANG ET AL.: EFFICIENT MINING OF FREQUENT ITEM SETS ON LARGE UNCERTAIN DATABASES 2179

1. http://fimi.cs.helsinki.fi/.
2. http://www.almaden.ibm.com/cs/disciplines/iis/.

TABLE 4
Recall and Precision of MB

frequentness probabilities as DP does; instead, MB only
computes the �I values, which can be obtained faster. We
also notice that the running times of both algorithms
decrease with a higher minsup. This is explained by Fig. 6b,
which shows that the number of PFIs generated by the two
algorithms, jPFIj, decreases as minsup increases. Thus, the
time required to compute the frequentness probabilities of
these item sets decreases. We can also see that jPFIj is
almost the same for the two algorithms, reflecting that the
results returned by MB closely resemble those of DP.

Fig. 6c examines the performance of MB and DP (in log
scale) over different minprob values. Their execution times
drop by about 6 percent when minprob changes from 0.1
to 0.9. We see that MB is faster than DP. For instance, at
minprob ¼ 0:5, MB needs 0.3 seconds, while DP requires
118 seconds, delivering an almost 400-fold performance
improvement.

3. MB versus MBP. We then examine the benefit of using
the improved PFI testing method (MBP) over the basic one
(MB). Fig. 7a shows that MBP runs faster than MB over
different minsup values. For instance, when minsup ¼ 0:5,
MBP addresses an improvement of 25 percent. Moreover, as
minsup increases, the performance gap increases. This can
be explained by Fig. 7b, which presents the fraction of the
database scanned by the two algorithms. When minsup
increases, MBP examines a smaller fraction of the database.
For instance, at minsup ¼ 0:5, MBP scans about 80 percent of
the database. This reduces the I/O cost and the effort for

interpreting the retrieved tuples. Thus, MBP performs better
than MB.

4. Scalability. Fig. 8a examines the scalability of the three
algorithms. Both MB and MBP scale well with n. The
performance gap between MB/MBP and DP also increases
with n. At n ¼ 20k, MB and DP need 0.62 and 657.7 seconds,
respectively; at n ¼ 100k, MB finished in 3.1 seconds while
DP spends 10 hours. Hence, the scalability of our
approaches is better than that of DP.

5. Existential probability. We also examine the effect of
using different distributions to characterize an attribute’s
probability, in Fig. 8b. We use Un to denote a uniform
distribution, and Gi (i ¼ 0; . . . ; 5) to represent a Gaussian
distribution. The details of these distributions are shown in
Table 5. We observe that MB and MBP perform consistently
better than DP over different distributions. All algorithms
run comparatively slower on G0. This is because G0 has
high mean (0.8) and low standard deviation (0.125), which
generates high existential probability values. As a result,
many candidates and PFIs are generated. Also note that G3

and Un, which have the same mean and standard deviation,
yield similar performance. Table 4d gives the accuracy for
G1; . . . ; G5, which are Gaussian distributions with mean 0.5
and various standard deviations. We see that MB shows
little variation in accuracy, which remains high (>98%),
over the various distributions. We also found that the
precision and recall of MB and MBP over these distributions
are the same, and are close to 1. Hence, the PFIs retrieved by
our methods closely resemble those returned by DP.

8.2 Results on Incremental PFI Mining

We now examine the performance of our incremental mining
algorithms on attribute-uncertain data. For these algorithms,
we assume that the PFIs for the old database D have already
been obtained by some PFI mining algorithm, which can be
used to discover the PFIs for the new database Dþ. We
compare them with the nonincremental counterparts,DP and
MB. These algorithms are run directly on Dþ to obtain PFIs.

2180 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

Fig. 6. Efficiency of MB versus DP.

Fig. 7. Efficiency of MBP versus MB.

Fig. 8. Other results for threshold-based PFIs.

TABLE 5
Existential Probability (Experiment (5))

6. uFUP versus DP. We first compare the performance of
uFUP and DP. Notice that both methods produce exact
threshold-based PFIs on Dþ. Fig. 9a illustrates the result
over different minsup values. We observe that uFUP is
faster than DP. For example, at minsup ¼ 0:2, the improve-
ment is 37.5 percent. This is because uFUP does not generate
PFIs from scratch; instead, it uses the PFIs of D to derive the
new PFIs in Dþ. Since most of the PFIs for D and Dþ are
similar, only a few candidates need to be tested. Fig. 9b
shows the performance of these algorithms over different
sizes of the delta database (d), from 1 to 10 percent of the
size of D. Their running times increase with d, since more
effort needs to be spent on retrieving candidates from d. As
we can see, uFUP is consistently better than DP; for instance,
when n0 is 5 percent of n, the improvement is 33 percent.

7. uFUPappuFUPapp versus MB. We next compare uFUPapp and MB,
which both yield approximate PFIs. Fig. 10a shows that
uFUPapp is faster than MB over different minsup values. For
instance, at minsup ¼ 0:2, uFUPapp finished in only
0.078 seconds, giving an almost fivefold improvement
over that of MB, which completes in 0.378 seconds. As we
can see in Fig. 10b, uFUPapp outperforms MB over different
sizes of d. Fig. 10c examines the algorithms under a wide
range of minprob values. Again, uFUPapp runs faster than
MB. Fig. 10d examines the effect of using different
probability distributions on the attribute uncertainty
model. The details are of these distributions are listed in
Table 5. We can see that uFUPapp performs better than MB

over different types of distributions. The consistently high
performance gain demonstrated by uFUPapp can be ex-
plained by 1) the pruning method used by uFUPapp

removes many candidate item sets, so that only a few of
them need to be tested; and 2) the old PFI results of D are
effectively used, so that the time for scanning Dþ is
significantly reduced.

8. uFUPappuFUPapp versus uFUP. Fig. 11 compares uFUPapp and
uFUP over different values of minsup and n0=n. We can see
that uFUPapp performs better than uFUP, by two to three
orders of magnitude. This shows that our way of adapting
MB to devise an incremental mining algorithm (uFUPapp) is
highly effective.

9. Accuracy. Table 6 compares the recall and the
precision of uFUPapp relative to that of uFUP. Here, we use
(23) and (24); in particular, DP and MB are substituted by
uFUP and uFUPapp, respectively. We can see that the recall
and the precision values are always higher than 98 percent.
We have also compared the accuracies for different
existential probability distributions given in Table 5 and
found that the standard deviation of Gaussian distribution
has little effect on the accuracy. Hence, uFUPapp can
accurately maintain PFIs for evolving data.

8.3 Other Experiments

We have also performed experiments on the tuple
uncertainty model and the synthetic data set. Since they
are similar to the results presented above, we only describe
the most representative ones. For the accuracy aspect, the
recall and precision values of approximate results on these
data sets are still higher than 98 percent. Thus, our model-
based approaches can return accurate results.

Tuple uncertainty. We compare the performance of DP,
TODIS, MB, and MBP in Fig. 12a. Here, TODIS is proposed

WANG ET AL.: EFFICIENT MINING OF FREQUENT ITEM SETS ON LARGE UNCERTAIN DATABASES 2181

Fig. 9. Efficiency of uFUP versus DP.

Fig. 10. Efficiency of uFUPapp versus MB.

Fig. 11. Efficiency of uFUPapp versus uFUP.

TABLE 6
Recall and Precision of uFUPapp

in [30], for retrieving exact threshold-based PFIs from
tuple-uncertain data. We can see that both MB and MBP

perform much better than DP and TODIS, under different
minsup values. When minsup ¼ 0:3, MB needs 1.6 seconds,
but DP and TODIS complete in 581 and 81 seconds,
respectively. Fig. 12b compares the algorithms under
different sizes of d. Similar to the results for attribute
uncertainty, uFUP (uFUPapp) performs better than DP

(respectively MB). Moreover, uFUPapp outperforms uFUP

by more than three orders of magnitude. Hence, our
algorithms also work well for tuple-uncertain databases.

In [35], an algorithm for finding heavy hitters from
probabilistic data streams was proposed. We develop a
variant of that algorithm, which we call STREAM, as another
exact incremental mining algorithm for finding 1-PFIs.
Fig. 12c studies the performance of incremental mining
algorithms for finding 1-PFIs. STREAM performs better than
uFUP, because STREAM maintains the s-pmfs for all
candidate 1-PFIs, which can be updated easily upon the
arrival of new transactions. On the other hand, uFUP only
keeps the s-pmfs of 1-PFIs of D. For new candidate PFIs that
appear in Dþ but not D, uFUP has to compute their s-pmfs
by scanning Dþ, which can be costly. Observe that uFUPapp

is much faster than STREAM, since it does not compute the
exact s-pmf information. We further found that the 1-PFIs
returned by uFUPapp are the same as those generated by
STREAM. We remark that while STREAM only returns 1-PFIs,
both uFUP and uFUPapp can generate PFIs of any size.

Therefore, we have designed STREAM+DP, which first
finds 1-PFIs with STREAM and then feeds the 1-PFIs to DP to
find all other PFIs. Fig. 12d shows that STREAM+DP is not as
efficient as uFUP nor uFUPapp. The reason is that finding 1-
PFIs constitutes only a small portion of time in finding all
PFIs. Although STREAM performs well in finding 1-PFIs,
having to find the remaining PFIs with DP makes
STREAM+DP inefficient.

Synthetic data set. Finally, we test our algorithms on a
synthetic data set. Fig. 13a compares the performance of MB,
MBP, and DP, for the attribute uncertainty model. We found
that MB and MBP outperform DP. Fig. 13b compares the

performance of DP, MB, uFUP, and uFUPapp for tuple
uncertainty. We can see that the incremental mining
algorithms perform better than their nonincremental coun-
terparts. We also observe that uFUPapp runs faster than
uFUP, by more than one order of magnitude. Hence, our
model-based incremental mining algorithm also works well
for this data set.

9 CONCLUSIONS

In this paper, we propose a model-based approach to extract
threshold-based PFIs from large uncertain databases. Its
main idea is to approximate the s-pmf of a PFI by some
common probability model, so that a PFI can be verified
quickly. We also study two incremental mining algorithms
for retrieving PFIs from evolving databases. Our experi-
mental results show that these algorithms are highly efficient
and accurate. They support both attribute- and tuple-
uncertain data. We will examine how to use the model-
based approach to develop other mining algorithms (e.g.,
clustering and classification) on uncertain data. It is also
interesting to study efficient mining algorithms for handling
tuple updates and deletion. Another interesting work is to
investigate PFI mining algorithms for probability models
that capture correlation among attributes and tuples.

REFERENCES

[1] A. Veloso, W. Meira Jr., M. de Carvalho, B. Pôssas, S.
Parthasarathy, and M.J. Zaki, “Mining Frequent Itemsets in
Evolving Databases,” Proc. Second SIAM Int’l Conf. Data Mining
(SDM), 2002.

[2] C. Aggarwal, Y. Li, J. Wang, and J. Wang, “Frequent Pattern
Mining with Uncertain Data,” Proc. 15th ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD), 2009.

[3] C. Aggarwal and P. Yu, “A Survey of Uncertain Data Algorithms
and Applications,” IEEE Trans Knowledge and Data Eng., vol. 21,
no. 5, pp. 609-623, May 2009.

[4] R. Agrawal, T. Imieli�nski, and A. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, 1993.

[5] O. Benjelloun, A.D. Sarma, A. Halevy, and J. Widom, “ULDBs:
Databases with Uncertainty and Lineage,” Proc. 32nd Int’l Conf.
Very Large Data Bases (VLDB), 2006.

[6] T. Bernecker, H. Kriegel, M. Renz, F. Verhein, and A. Zuefle,
“Probabilistic Frequent Itemset Mining in Uncertain Databases,”
Proc. 15th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD), 2009.

[7] C.J. van Rijsbergen, Information Retrieval. Butterworth, 1979.
[8] L.L. Cam, “An Approximation Theorem for the Poisson Binomial

Distribution,” Pacific J. Math., vol. 10, pp. 1181-1197, 1960.
[9] H. Cheng, P. Yu, and J. Han, “Approximate Frequent Itemset

Mining in the Presence of Random Noise,” Proc. Soft Computing for
Knowledge Discovery and Data Mining, pp. 363-389, 2008.

[10] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating
Probabilistic Queries over Imprecise Data,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, 2003.

2182 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

Fig. 12. Tuple uncertainty.

Fig. 13. Synthetic data.

[11] D. Cheung, J. Han, V. Ng, and C. Wong, “Maintenance of
Discovered Association Rules in Large Databases: An Incremental
Updating Technique,” Proc. 12th Int’l Conf. Data Eng. (ICDE), 1996.

[12] D. Cheung, S.D. Lee, and B. Kao, “A General Incremental
Technique for Maintaining Discovered Association Rules,” Proc.
Fifth Int’l Conf. Database Systems for Advanced Applications
(DASFAA), 1997.

[13] W. Cheung and O.R. Zaı̈ane, “Incremental Mining of Frequent
Patterns without Candidate Generation or Support Constraint,”
Proc. Seventh Int’l Database Eng. and Applications Symp. (IDEAS),
2003.

[14] C.K. Chui, B. Kao, and E. Hung, “Mining Frequent Itemsets from
Uncertain Data,” Proc. 11th Pacific-Asia Conf. Advances in Knowledge
Discovery and Data Mining (PAKDD), 2007.

[15] G. Cormode and M. Garofalakis, “Sketching Probabilistic Data
Streams,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
2007.

[16] N. Dalvi and D. Suciu, “Efficient Query Evaluation on Probabil-
istic Databases,” Proc. 13th Int’l Conf. Very Large Data Bases
(VLDB), 2004.

[17] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W.
Hong, “Model-Driven Data Acquisition in Sensor Networks,”
Proc. 13th Int’l Conf. Very Large Data Bases (VLDB), 2004.

[18] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without
Candidate Generation,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, 2000.

[19] J. Huang, “MayBMS: A Probabilistic Database Management
System,” Proc. 35th ACM SIGMOD Int’l Conf. Management of Data,
2009.

[20] R. Jampani, L. Perez, M. Wu, F. Xu, C. Jermaine, and P. Haas,
“MCDB: A Monte Carlo Approach to Managing Uncertain Data,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, 2008.

[21] J. Ren, S.D. Lee, X. Chen, B. Kao, R. Cheng, and D.W. Cheung,
“Naive Bayes Classification of Uncertain Data,” Proc. IEEE Ninth
Int’l Conf. Data Mining (ICDM), 2009.

[22] N. Khoussainova, M. Balazinska, and D. Suciu, “Towards
Correcting Input Data Errors Probabilistically Using Integrity
Constraints,” Proc. Fifth ACM Int’l Workshop Data Eng. for Wireless
and Mobile Access (MobiDE), 2006.

[23] H. Kriegel and M. Pfeifle, “Density-Based Clustering of Uncertain
Data,” Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery in Data
Mining (KDD), 2005.

[24] C. Kuok, A. Fu, and M. Wong, “Mining Fuzzy Association Rules
in Databases,” SIGMOD Record, vol. 27, no. 1, pp. 41-46, 1998.

[25] C.K.-S. Leung, Q.I. Khan, and T. Hoque, “Cantree: A Tree
Structure for Efficient Incremental Mining of Frequent Patterns,”
Proc. IEEE Fifth Int’l Conf. Data Mining (ICDM), 2005.

[26] A. Lu, Y. Ke, J. Cheng, and W. Ng, “Mining Vague Association
Rules,” Proc. 12th Int’l Conf. Database Systems for Advanced
Applications (DASFAA), 2007.

[27] M. Mutsuzaki, “Trio-One: Layering Uncertainty and Lineage on a
Conventional DBMS,” Proc. Third Biennial Conf. Innovative Data
Systems Research (CIDR), 2007.

[28] P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, “Querying the
Uncertain Position of Moving Objects,” Temporal Databases:
Research and Practice, Springer Verlag, 1998.

[29] C. Stein, Approximate Computation of Expectations, Lecture Notes
- Monograph Series, vol. 7, Inst. of Math. Statistics, 1986.

[30] L. Sun, R. Cheng, D.W. Cheung, and J. Cheng, “Mining Uncertain
Data with Probabilistic Guarantees,” Proc. 16th ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining, 2010.

[31] T. Jayram et al., “Avatar Information Extraction System,” IEEE
Data Eng. Bull., vol. 29, no. 1, pp. 40-48, Mar. 2006.

[32] S. Tsang, B. Kao, K.Y. Yip, W.-S. Ho, and S.D. Lee., “Decision
Trees for Uncertain Data,” Proc. IEEE Int’l Conf. Data Eng. (ICDE),
2009.

[33] L. Wang, R. Cheng, S.D. Lee, and D. Cheung, “Accelerating
Probabilistic Frequent Itemset Mining: A Model-Based Ap-
proach,” Proc. 19th ACM Int’l Conf. Information and Knowledge
Management (CIKM), 2010.

[34] M. Yiu, N. Mamoulis, X. Dai, Y. Tao, and M. Vaitis, “Efficient
Evaluation of Probabilistic Advanced Spatial Queries on Existen-
tially Uncertain Data,” IEEE Trans Knowledge and Data Eng.,
vol. 21, no. 9, pp. 108-122, Jan. 2009.

[35] Q. Zhang, F. Li, and K. Yi, “Finding Frequent Items in
Probabilistic Data,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, 2008.

Liang Wang received the BEng degree in
computer science from Shanghai Jiaotong Uni-
versity and the MPhil degree majoring in
computer science from the University of Hong
Kong in 2008 and 2011, respectively. His
research interests include uncertain database,
data mining, and data management. Now, he
works as a software engineer at Microsoft
Corporation.

David Wai-Lok Cheung received the MSc and
PhD degrees in computer science from Simon
Fraser University, Canada, in 1985 and 1989,
respectively. Since 1994, he has been a faculty
member in the Department of Computer Science
at the University of Hong Kong. His research
interests include database, data mining, data-
base security and privacy. He was the program
committee chairman of PAKDD 2001, program
cochair of PAKDD 2005, conference chair of

PAKDD 2007 and 2011, conference cochair of CIKM 2009, and
conference cochair of PAKDD 2011.

Reynold Cheng received the BEng degree in
computer engineering and the MPhil degree in
computer science and information systems from
the University of Hong Kong (HKU), in 1998 and
2000, respectively, and the MSc and PhD
degrees from the Department of Computer
Science, Purdue University, in 2003 and 2005,
respectively. He is an assistant professor in the
Department of Computer Science at HKU. He
was the recipient of the 2010 Research Output

Prize in the Department of Computer Science at HKU. From 2005 to
2008, he was an assistant professor in the Department of Computing at
Hong Kong Polytechnic University, where he received two Performance
Awards. He has served on the program committees and review panels
for leading database conferences and journals. He is also a guest editor
for a special issue in IEEE Transactions on Knowledge and Data
Engineering. His research interests include database management as
well as querying and mining of uncertain data. He is a member of the
IEEE, the ACM, ACM SIGMOD, and UPE.

Sau Dan Lee received the BSc and MPhil
degrees from the University of Hong Kong, in
1995 and 1998, respectively, and the PhD
degree from the University of Freiburg, Germany,
in 2006. He is a postdoctoral fellow at the
University of Hong Kong. He is interested in the
research areas of data mining, machine learning,
uncertain data management and information
management on the WWW. He has also de-
signed and developed backend software sys-

tems for e-Business and investment banking.

Xuan S. Yang received the BSc degree in
computer science from Fudan University in
2009. Currently, he is working toward the PhD
degree at the University of Hong Kong under
the supervision of Dr. Reynold Cheng and
Prof. David Cheung. His research interests
include uncertain data management, data
cleaning, and web data mining.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ET AL.: EFFICIENT MINING OF FREQUENT ITEM SETS ON LARGE UNCERTAIN DATABASES 2183

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

