7 research outputs found

    Enzyme pre‐milling treatments improved milling performance of chickpeas by targeting mechanisms of seed coat and cotyledon adhesion with various effects on dhal quality

    No full text
    BACKGROUND: Dehulling and splitting are important elements of the milling process to produce dhal from pulses. However, grain that is difficult-to-mill because of tightly adhered seed coats or cotyledons that resist separation makes it difficult to achieve high quality dhal. Milling yields are reduced, energy inputs into the milling process are increased, and the resulting dhal can be of poorer quality, chipped or abraded. RESULTS: Eight enzyme pre-treatments were chosen based on the hypothesised mechanisms of seed coat and cotyledon adhe-sion established previously. Using a difficult-to-mill chickpea (Cicer arietinum L.) genotype, we examined the effects of these pre-treatments, over time, on laboratory-scale milling performance and dhal quality. We pioneered a texture analyser method to measure the flex of the cotyledons and the force required to cleave the cotyledons. The enzyme-induced changes ranged from negative (tough seed coat, weight loss, deleterious colour and texture, increased visual damage to cotyledons and increased kibble loss, concave cotyledons, increased flex, and changes in taste) to positive (brittle seed coat, increased seed vol ume, improved dehulling efficiency and splitting yield, reduced cotyledon cleavage force, and acceptable dhal quality and taste). CONCLUSION: All pre-treatments improved milling performance compared to milling the raw seed, although there was consid-erable variation between them. Two pre-treatments showed no improvement in milling yields compared to the water control, and several pre-treatments resulted in unacceptable qualities. Three pre-treatments, endo-polygalacturonanase, α-galactosidase and cellulase, show potential for commercial milling applications and could assist pulse millers globally to achieve high quality dhal at the same time as minimising milling effort

    Advances in the diagnosis and classification of gastric and intestinal motility disorders

    Get PDF
    Disturbances of gastric, intestinal and colonic motor and sensory functions affect a large proportion of the population worldwide, impair quality of life and cause considerable health-care costs. Assessment of gastrointestinal motility in these patients can serve to establish diagnosis and to guide therapy. Major advances in diagnostic techniques during the past 5-10 years have led to this update about indications for and selection and performance of currently available tests. As symptoms have poor concordance with gastrointestinal motor dysfunction, clinical motility testing is indicated in patients in whom there is no evidence of causative mucosal or structural diseases such as inflammatory or malignant disease. Transit tests using radiopaque markers, scintigraphy, breath tests and wireless motility capsules are noninvasive. Other tests of gastrointestinal contractility or sensation usually require intubation, typically represent second-line investigations limited to patients with severe symptoms and are performed at only specialized centres. This Consensus Statement details recommended tests as well as useful clinical alternatives for investigation of gastric, small bowel and colonic motility. The article provides recommendations on how to classify gastrointestinal motor disorders on the basis of test results and describes how test results guide treatment decisions
    corecore