509 research outputs found

    A powerful bursting radio source towards the Galactic Centre

    Full text link
    Transient astronomical sources are typically powered by compact objects and usually signify highly explosive or dynamic events. While radio astronomy has an impressive record of obtaining high time resolution observations, usually it is achieved in quite narrow fields-of-view. Consequently, the dynamic radio sky is poorly sampled, in contrast to the situation in the X- and gamma-ray bands in which wide-field instruments routinely detect transient sources. Here we report a new transient source, GCRT J1745-3009, detected in 2002 during a moderately wide-field radio transient monitoring program of the Galactic center (GC) region at 0.33 GHz. The characteristics of its bursts are unlike those known for any other class of radio transient. If located in or near the GC, its brightness temperature (~10^16 K) and the implied energy density within GCRT J1745-3009 vastly exceeds that observed in most other classes of radio astronomical sources, and is consistent with coherent emission processes rarely observed. We conclude that GCRT J1745-3009 is the first member of a new class of radio transient sources, the first of possibly many new classes to be identified through current and upcoming radio surveys.Comment: 16 pages including 3 figures. Appears in Nature, 3 March 200

    Ecological strategies in California chaparral: Interacting effects of soils, climate, and fire on specific leaf area

    Get PDF
    Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use and regeneration traits. Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral in California. Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in 115 plots. Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire history. Conclusions: We conclude that because important correlations exist among both species traits and environmental filters, interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive effects

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis

    Get PDF
    The 2015 Magnetic Resonance Imaging in Multiple Sclerosis and 2016 Consortium of Multiple Sclerosis Centres guidelines on the use of MRI in diagnosis and monitoring of multiple sclerosis made an important step towards appropriate use of MRI in routine clinical practice. Since their promulgation, there have been substantial relevant advances in knowledge, including the 2017 revisions of the McDonald diagnostic criteria, renewed safety concerns regarding intravenous gadolinium-based contrast agents, and the value of spinal cord MRI for diagnostic, prognostic, and monitoring purposes. These developments suggest a changing role of MRI for the management of patients with multiple sclerosis. This 2021 revision of the previous guidelines on MRI use for patients with multiple sclerosis merges recommendations from the Magnetic Resonance Imaging in Multiple Sclerosis study group, Consortium of Multiple Sclerosis Centres, and North American Imaging in Multiple Sclerosis Cooperative, and translates research findings into clinical practice to improve the use of MRI for diagnosis, prognosis, and monitoring of individuals with multiple sclerosis. We recommend changes in MRI acquisition protocols, such as emphasising the value of three dimensional-fluid-attenuated inversion recovery as the core brain pulse sequence to improve diagnostic accuracy and ability to identify new lesions to monitor treatment effectiveness, and we provide recommendations for the judicious use of gadolinium-based contrast agents for specific clinical purposes. Additionally, we extend the recommendations to the use of MRI in patients with multiple sclerosis in childhood, during pregnancy, and in the post-partum period. Finally, we discuss promising MRI approaches that might deserve introduction into clinical practice in the near future

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Archaea are prokaryotic organisms with simplified versions of eukaryotic transcription systems. Genes coding for the general transcription factors TBP and TFB are present in multiple copies in several Archaea, including <it>Halobacterium </it>sp. NRC-1. Multiple TBP and TFBs have been proposed to participate in transcription of genes via recognition and recruitment of RNA polymerase to different classes of promoters.</p> <p>Results</p> <p>We attempted to knock out all six TBP and seven TFB genes in <it>Halobacterium </it>sp. NRC-1 using the <it>ura</it>3-based gene deletion system. Knockouts were obtained for six out of thirteen genes, <it>tbp</it>CDF and <it>tfb</it>ACG, indicating that they are not essential for cell viability under standard conditions. Screening of a population of 1,000 candidate mutants showed that genes which did not yield mutants contained less that 0.1% knockouts, strongly suggesting that they are essential. The transcriptomes of two mutants, Δ<it>tbp</it>D and Δ<it>tfb</it>A, were compared to the parental strain and showed coordinate down regulation of many genes. Over 500 out of 2,677 total genes were regulated in the Δ<it>tbp</it>D and Δ<it>tfb</it>A mutants with 363 regulated in both, indicating that over 10% of genes in both strains require the action of both TbpD and TfbA for normal transcription. Culturing studies on the Δ<it>tbp</it>D and Δ<it>tfb</it>A mutant strains showed them to grow more slowly than the wild-type at an elevated temperature, 49°C, and they showed reduced viability at 56°C, suggesting TbpD and TfbA are involved in the heat shock response. Alignment of TBP and TFB protein sequences suggested the expansion of the TBP gene family, especially in <it>Halobacterium </it>sp. NRC-1, and TFB gene family in representatives of five different genera of haloarchaea in which genome sequences are available.</p> <p>Conclusion</p> <p>Six of thirteen TBP and TFB genes of <it>Halobacterium </it>sp. NRC-1 are non-essential under standard growth conditions. TbpD and TfbA coordinate the expression of over 10% of the genes in the NRC-1 genome. The Δ<it>tbp</it>D and Δ<it>tfb</it>A mutant strains are temperature sensitive, possibly as a result of down regulation of heat shock genes. Sequence alignments suggest the existence of several families of TBP and TFB transcription factors in <it>Halobacterium </it>which may function in transcription of different classes of genes.</p

    Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium

    Get PDF
    Proteorhodopsin (PR) is a photoprotein that functions as a light-driven proton pump in diverse marine Bacteria and Archaea. Recent studies have suggested that PR may enhance both growth rate and yield in some flavobacteria when grown under nutrient-limiting conditions in the light. The direct involvement of PR, and the metabolic details enabling light-stimulated growth, however, remain uncertain. Here, we surveyed transcriptional and growth responses of a PR-containing marine flavobacterium during carbon-limited growth in the light and the dark. As previously reported (Gómez-Consarnau et al., 2007), Dokdonia strain MED134 exhibited light-enhanced growth rates and cell yields under low carbon growth conditions. Inhibition of retinal biosynthesis abolished the light-stimulated growth response, supporting a direct role for retinal-bound PR in light-enhanced growth. Among protein-coding transcripts, both PR and retinal biosynthetic enzymes showed significant upregulation in the light. Other light-associated proteins, including bacterial cryptochrome and DNA photolyase, were also expressed at significantly higher levels in the light. Membrane transporters for Na+/phosphate and Na+/alanine symporters, and the Na+-translocating NADH-quinone oxidoreductase (NQR) linked electron transport chain, were also significantly upregulated in the light. Culture experiments using a specific inhibitor of Na+-translocating NQR indicated that sodium pumping via NQR is a critical metabolic process in the light-stimulated growth of MED134. In total, the results suggested the importance of both the PR-enabled, light-driven proton gradient, as well as the generation of a Na+ ion gradient, as essential components for light-enhanced growth in these flavobacteria.Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (NSF Science and Technology Center Award EF0424599.)Japan Society for the Promotion of Science (Postdoctoral Fellowships for Research Abroad

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    A Novel Docetaxel-Loaded Poly (ε-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment

    Get PDF
    Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ε-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere®in the MCF-7 TAX30 cell culture, but the differences were not significant (p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere®(p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer

    Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and δ15N Analysis of Amino Acids

    Get PDF
    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ15N values of bulk skin, with distinct “low δ15N” and “high δ15N” groups. δ15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species’ imminent risk of extinction in the Pacific
    corecore