276 research outputs found

    Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion

    Get PDF
    Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles

    Re-localization of Cellular Protein SRp20 during Poliovirus Infection: Bridging a Viral IRES to the Host Cell Translation Apparatus

    Get PDF
    Poliovirus IRES-mediated translation requires the functions of certain canonical as well as non-canonical factors for the recruitment of ribosomes to the viral RNA. The interaction of cellular proteins PCBP2 and SRp20 in extracts from poliovirus-infected cells has been previously described, and these two proteins were shown to function synergistically in viral translation. To further define the mechanism of ribosome recruitment for the initiation of poliovirus IRES-dependent translation, we focused on the role of the interaction between cellular proteins PCBP2 and SRp20. Work described here demonstrates that SRp20 dramatically re-localizes from the nucleus to the cytoplasm of poliovirus-infected neuroblastoma cells during the course of infection. Importantly, SRp20 partially co-localizes with PCBP2 in the cytoplasm of infected cells, corroborating our previous in vitro interaction data. In addition, the data presented implicate the presence of these two proteins in viral translation initiation complexes. We show that in extracts from poliovirus-infected cells, SRp20 is associated with PCBP2 bound to poliovirus RNA, indicating that this interaction occurs on the viral RNA. Finally, we generated a mutated version of SRp20 lacking the RNA recognition motif (SRp20ΔRRM) and found that this protein is localized similar to the full length SRp20, and also partially co-localizes with PCBP2 during poliovirus infection. Expression of this mutated version of SRp20 results in a ∼100 fold decrease in virus yield for poliovirus when compared to expression of wild type SRp20, possibly via a dominant negative effect. Taken together, these results are consistent with a model in which SRp20 interacts with PCBP2 bound to the viral RNA, and this interaction functions to recruit ribosomes to the viral RNA in a direct or indirect manner, with the participation of additional protein-protein or protein-RNA interactions

    How are podocytes affected in nail–patella syndrome?

    Get PDF
    Nail–patella syndrome is an autosomal-dominant hereditary disease named for dysplastic fingernails and toenails and hypoplastic or absent kneecaps evident in patients with the syndrome. Prognosis is determined by the nephropathy that develops in many such patients. Besides podocyte foot-process effacement, pathognomonic changes in the kidney comprise electron-lucent areas and fibrillar inclusions in the glomerular basement membrane. These characteristic symptoms are caused by mutations in the gene encoding the transcription factor LMX1B, a member of the LIM-homeodomain gene family. Comparable with the human syndrome, homozygous Lmx1b knockout mice lack patellae and suffer from severe podocyte damage. In contrast, however, podocin and the α3 and α4 chains of collagen IV are absent in the glomeruli of Lmx1b knockout mice. Further studies with podocyte-specific Lmx1b knockout mice have confirmed the importance of LMX1B in podocytes, as these mice apparently develop foot processes initially but lose them later on. We therefore conclude that LMX1B is essential for the development of metanephric precursor cells into podocytes and possibly also for maintaining the differentiation status of podocytes. LMX1B can serve as a model system to elucidate a genetic program in podocytes

    BCR and its mutants, the reciprocal t(9;22)-associated ABL/BCR fusion proteins, differentially regulate the cytoskeleton and cell motility

    Get PDF
    BACKGROUND: The reciprocal (9;22) translocation fuses the bcr (breakpoint cluster region) gene on chromosome 22 to the abl (Abelson-leukemia-virus) gene on chromosome 9. Depending on the breakpoint on chromosome 22 (the Philadelphia chromosome – Ph+) the derivative 9+ encodes either the p40((ABL/BCR) )fusion transcript, detectable in about 65% patients suffering from chronic myeloid leukemia, or the p96((ABL/BCR) )fusion transcript, detectable in 100% of Ph+ acute lymphatic leukemia patients. The ABL/BCRs are N-terminally truncated BCR mutants. The fact that BCR contains Rho-GEF and Rac-GAP functions strongly suggest an important role in cytoskeleton modeling by regulating the activity of Rho-like GTPases, such as Rho, Rac and cdc42. We, therefore, compared the function of the ABL/BCR proteins with that of wild-type BCR. METHODS: We investigated the effects of BCR and ABL/BCRs i.) on the activation status of Rho, Rac and cdc42 in GTPase-activation assays; ii.) on the actin cytoskeleton by direct immunofluorescence; and iii) on cell motility by studying migration into a three-dimensional stroma spheroid model, adhesion on an endothelial cell layer under shear stress in a flow chamber model, and chemotaxis and endothelial transmigration in a transwell model with an SDF-1α gradient. RESULTS: Here we show that both ABL/BCRs lost fundamental functional features of BCR regarding the regulation of small Rho-like GTPases with negative consequences on cell motility, in particular on the capacity to adhere to endothelial cells. CONCLUSION: Our data presented here describe for the first time an analysis of the biological function of the reciprocal t(9;22) ABL/BCR fusion proteins in comparison to their physiological counterpart BCR

    Altering Chemosensitivity by Modulating Translation Elongation

    Get PDF
    BACKGROUND: The process of translation occurs at a nexus point downstream of a number of signal pathways and developmental processes. Modeling activation of the PTEN/AKT/mTOR pathway in the Emu-Myc mouse is a valuable tool to study tumor genotype/chemosensitivity relationships in vivo. In this model, blocking translation initiation with silvestrol, an inhibitor of the ribosome recruitment step has been showed to modulate the sensitivity of the tumors to the effect of standard chemotherapy. However, inhibitors of translation elongation have been tested as potential anti-cancer therapeutic agents in vitro, but have not been extensively tested in genetically well-defined mouse tumor models or for potential synergy with standard of care agents. METHODOLOGY/PRINCIPAL FINDINGS: Here, we chose four structurally different chemical inhibitors of translation elongation: homoharringtonine, bruceantin, didemnin B and cycloheximide, and tested their ability to alter the chemoresistance of Emu-myc lymphomas harbouring lesions in Pten, Tsc2, Bcl-2, or eIF4E. We show that in some genetic settings, translation elongation inhibitors are able to synergize with doxorubicin by reinstating an apoptotic program in tumor cells. We attribute this effect to a reduction in levels of pro-oncogenic or pro-survival proteins having short half-lives, like Mcl-1, cyclin D1 or c-Myc. Using lymphomas cells grown ex vivo we reproduced the synergy observed in mice between chemotherapy and elongation inhibition and show that this is reversed by blocking protein degradation with a proteasome inhibitor. CONCLUSION/SIGNIFICANCE: Our results indicate that depleting short-lived pro-survival factors by inhibiting their synthesis could achieve a therapeutic response in tumors harboring PTEN/AKT/mTOR pathway mutations

    Exploiting unexpected situations in the mathematics classroom

    Get PDF
    The professional development of mathematics teachers needs to support teachers in orchestrating the mathematics classroom in ways that enable them to respond flexibly and productively to the unexpected. When a situation arises in the classroom which is not connected in an obvious way to the mathematical learning intentions of the lesson, it can be challenging for the teacher to improvise so as to craft this situation into an opportunity for doing and learning mathematics. In this study, as teacher-researcher I maintained a record of unexpected situations as they arose in my own secondary mathematics classroom. Details are given of four unexpected situations which I found ways to exploit mathematically, and these are analysed to highlight factors which may enhance a mathematics teacher’s preparedness for dealing with the unexpected. The results of this study indicate that deviating from the intended lesson to exploit an unexpected situation in which students have shown some interest can lead them into enjoyable and worthwhile mathematical engagement

    The research on the immuno-modulatory defect of Mesenchymal Stem Cell from Chronic Myeloid Leukemia patients

    Get PDF
    Overwhelming evidence from leukemia research has shown that the clonal population of neoplastic cells exhibits marked heterogeneity with respect to proliferation and differentiation. There are rare stem cells within the leukemic population that possess extensive proliferation and self-renewal capacity not found in the majority of the leukemic cells. These leukemic stem cells are necessary and sufficient to maintain the leukemia. While the hematopoietic stem cell (HSC) origin of CML was first suggested over 30 years ago, recently CML-initiating cells beyond HSCs are also being investigated. We have previously isolated fetal liver kinase-1-positive (Flk1+) cells carrying the BCR/ABL fusion gene from the bone marrow of Philadelphia chromosome-positive (Ph+) patients with hemangioblast property. Here, we showed that CML patient-derived Flk1+CD31-CD34-MSCs had normal morphology, phenotype and karyotype but appeared impaired in immuno-modulatory function. The capacity of patient Flk1+CD31-CD34- MSCs to inhibit T lymphocyte activation and proliferation was impaired in vitro. CML patient-derived MSCs have impaired immuno-modulatory functions, suggesting that the dysregulation of hematopoiesis and immune response may originate from MSCs rather than HSCs. MSCs might be a potential target for developing efficacious cures for CML

    Relative Impacts of Adult Movement, Larval Dispersal and Harvester Movement on the Effectiveness of Reserve Networks

    Get PDF
    Movement of individuals is a critical factor determining the effectiveness of reserve networks. Marine reserves have historically been used for the management of species that are sedentary as adults, and, therefore, larval dispersal has been a major focus of marine-reserve research. The push to use marine reserves for managing pelagic and demersal species poses significant questions regarding their utility for highly-mobile species. Here, a simple conceptual metapopulation model is developed to provide a rigorous comparison of the functioning of reserve networks for populations with different admixtures of larval dispersal and adult movement in a home range. We find that adult movement produces significantly lower persistence than larval dispersal, all other factors being equal. Furthermore, redistribution of harvest effort previously in reserves to remaining fished areas (‘fishery squeeze’) and fishing along reserve borders (‘fishing-the-line’) considerably reduce persistence and harvests for populations mobile as adults, while they only marginally changes results for populations with dispersing larvae. Our results also indicate that adult home-range movement and larval dispersal are not simply additive processes, but rather that populations possessing both modes of movement have lower persistence than equivalent populations having the same amount of ‘total movement’ (sum of larval and adult movement spatial scales) in either larval dispersal or adult movement alone

    Variations in corticosteroid/anesthetic injections for painful shoulder conditions: comparisons among orthopaedic surgeons, rheumatologists, and physical medicine and primary-care physicians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variations in corticosteroid/anesthetic doses for injecting shoulder conditions were examined among orthopaedic surgeons, rheumatologists, and primary-care sports medicine (PCSMs) and physical medicine and rehabilitation (PMRs) physicians to provide data needed for documenting inter-group differences for establishing uniform injection guidelines.</p> <p>Methods</p> <p>264 surveys, sent to these physicians in our tri-state area of the western United States, addressed corticosteroid/anesthetic doses and types used for subacromial impingement, degenerative glenohumeral and acromioclavicular arthritis, biceps tendinitis, and peri-scapular trigger points. They were asked about preferences regarding: 1) fluorinated vs. non-fluorinated corticosteroids, 2) acetate vs. phosphate types, 3) patient age, and 4) adjustments for special considerations including young athletes and diabetics.</p> <p>Results</p> <p>169 (64% response rate, RR) surveys were returned: 105/163 orthopaedic surgeons (64%RR), 44/77 PCSMs/PMRs (57%RR), 20/24 rheumatologists (83%RR). Although corticosteroid doses do not differ significantly between specialties (p > 0.3), anesthetic volumes show broad variations, with surgeons using larger volumes. Although 29% of PCSMs/PMRs, 44% rheumatologists, and 41% surgeons exceed "recommended" doses for the acromioclavicular joint, >98% were within recommendations for the subacromial bursa and glenohumeral joint. Depo-Medrol<sup>® </sup>(methylprednisolone acetate) and Kenalog<sup>® </sup>(triamcinolone acetonide) are most commonly used. More rheumatologists (80%) were aware that there are acetate and phosphate types of corticosteroids as compared to PCSMs/PMRs (76%) and orthopaedists (60%). However, relatively fewer rheumatologists (25%) than PCSMs/PMRs (32%) or orthopaedists (32%) knew that phosphate types are more soluble. Fluorinated corticosteroids, which can be deleterious to soft tissues, were used with these frequencies for the biceps sheath: 17% rheumatologists, 8% PCSMs/PMRs, 37% orthopaedists. Nearly 85% use the same non-fluorinated corticosteroid for all injections; <10% make adjustments for diabetic patients.</p> <p>Conclusion</p> <p>Variations between specialists in anesthetic doses suggest that surgeons (who use significantly larger volumes) emphasize determining the percentage of pain attributable to the injected region. Alternatively, this might reflect a more profound knowledge that non-surgeons specialists have of the potentially adverse cardiovascular effects of these agents. Variations between these specialists in corticosteroid/anesthetic doses and/or types, and their use in some special situations (e.g., diabetics), bespeak the need for additional investigations aimed at establishing uniform injection guidelines, and for identifying knowledge deficiencies that warrant advanced education.</p
    corecore