95 research outputs found
Transition-metal dimers and physical limits on magnetic anisotropy
Recent advances in nanoscience have raised interest in the minimum bit size
required for classical information storage, i.e. for bistability with
suppressed quantum tunnelling and energy barriers that exceed ambient
temperatures. In the case of magnetic information storage much attention has
centred on molecular magnets[1] with bits consisting of ~ 100 atoms, magnetic
uniaxial anisotropy energy barriers ~ 50 K, and very slow relaxation at low
temperatures. In this article we draw attention to the remarkable magnetic
properties of some transition metal dimers which have energy barriers
approaching ~ 500 K with only two atoms. The spin dynamics of these ultra small
nanomagnets is strongly affected by a Berry phase which arises from
quasi-degeneracies at the electronic Highest Occupied Molecular Orbital (HOMO)
energy. In a giant spin-approximation, this Berry phase makes the effective
reversal barrier thicker. [1] Gatteschi, D., Sessoli, R. & Villain, J.
Molecular Nanomagnets. (Oxford, New York 2006).Comment: 14 pages, 1 figur
A Machine Learning Approach for Identifying Novel Cell Type–Specific Transcriptional Regulators of Myogenesis
Transcriptional enhancers integrate the contributions of multiple classes of transcription factors (TFs) to orchestrate the myriad spatio-temporal gene expression programs that occur during development. A molecular understanding of enhancers with similar activities requires the identification of both their unique and their shared sequence features. To address this problem, we combined phylogenetic profiling with a DNA–based enhancer sequence classifier that analyzes the TF binding sites (TFBSs) governing the transcription of a co-expressed gene set. We first assembled a small number of enhancers that are active in Drosophila melanogaster muscle founder cells (FCs) and other mesodermal cell types. Using phylogenetic profiling, we increased the number of enhancers by incorporating orthologous but divergent sequences from other Drosophila species. Functional assays revealed that the diverged enhancer orthologs were active in largely similar patterns as their D. melanogaster counterparts, although there was extensive evolutionary shuffling of known TFBSs. We then built and trained a classifier using this enhancer set and identified additional related enhancers based on the presence or absence of known and putative TFBSs. Predicted FC enhancers were over-represented in proximity to known FC genes; and many of the TFBSs learned by the classifier were found to be critical for enhancer activity, including POU homeodomain, Myb, Ets, Forkhead, and T-box motifs. Empirical testing also revealed that the T-box TF encoded by org-1 is a previously uncharacterized regulator of muscle cell identity. Finally, we found extensive diversity in the composition of TFBSs within known FC enhancers, suggesting that motif combinatorics plays an essential role in the cellular specificity exhibited by such enhancers. In summary, machine learning combined with evolutionary sequence analysis is useful for recognizing novel TFBSs and for facilitating the identification of cognate TFs that coordinate cell type–specific developmental gene expression patterns
Multifactorial Regulation of a Hox Target Gene
Hox proteins play fundamental roles in controlling morphogenetic diversity along the anterior–posterior body axis of animals by regulating distinct sets of target genes. Within their rather broad expression domains, individual Hox proteins control cell diversification and pattern formation and consequently target gene expression in a highly localized manner, sometimes even only in a single cell. To achieve this high-regulatory specificity, it has been postulated that Hox proteins co-operate with other transcription factors to activate or repress their target genes in a highly context-specific manner in vivo. However, only a few of these factors have been identified. Here, we analyze the regulation of the cell death gene reaper (rpr) by the Hox protein Deformed (Dfd) and suggest that local activation of rpr expression in the anterior part of the maxillary segment is achieved through a combinatorial interaction of Dfd with at least eight functionally diverse transcriptional regulators on a minimal enhancer. It follows that context-dependent combinations of Hox proteins and other transcription factors on small, modular Hox response elements (HREs) could be responsible for the proper spatio-temporal expression of Hox targets. Thus, a large number of transcription factors are likely to be directly involved in Hox target gene regulation in vivo
The association of depression and all-cause and cause-specific mortality: an umbrella review of systematic reviews and meta-analyses
Background: Depression is a prevalent and disabling mental disorder that frequently co-occurs with a wide range of chronic conditions. Evidence has suggested that depression could be associated with excess all-cause mortality across different settings and populations, although the causality of these associations remains unclear. Methods: We conducted an umbrella review of systematic reviews and meta-analyses of observational studies. PubMed, PsycINFO, and Embase electronic databases were searched through January 20, 2018. Systematic reviews and meta-analyses that investigated associations of depression and all-cause and cause-specific mortality were selected for the review. The evidence was graded as convincing, highly suggestive, suggestive, or weak based on quantitative criteria that included an assessment of heterogeneity, 95% prediction intervals, small-study effects, and excess significance bias. Results: A total of 26 references providing 2 systematic reviews and data for 17 meta-analytic estimates met inclusion criteria (19 of them on all-cause mortality); data from 246 unique studies (N = 3,825,380) were synthesized. All 17 associations had P < 0.05 per random effects summary effects, but none of them met criteria for convincing evidence. Associations of depression and all-cause mortality in patients after acute myocardial infarction, in individuals with heart failure, in cancer patients as well as in samples from mixed settings met criteria for highly suggestive evidence. However, none of the associations remained supported by highly suggestive evidence in sensitivity analyses that considered studies employing structured diagnostic interviews. In addition, associations of depression and all-cause mortality in cancer and post-acute myocardial infarction samples were supported only by suggestive evidence when studies that tried to adjust for potential confounders were considered. Conclusions: Even though associations between depression and mortality have nominally significant results in all assessed settings and populations, the evidence becomes weaker when focusing on studies that used structured interviews and those that tried to adjust for potential confounders. A causal effect of depression on all-cause and cause-specific mortality remains unproven, and thus interventions targeting depression are not expected to result in lower mortality rates at least based on current evidence from observational studies
FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells
The transcription factor FOXP3 has been identified as a tumour suppressor in the breast and prostate epithelia, but little is known about its specific mechanism of action. We have identified a feed-forward regulatory loop in which FOXP3 suppresses the expression of the oncogene SATB1. In particular, we demonstrate that SATB1 is not only a direct target of FOXP3 repression, but that FOXP3 also induces two miRs, miR-7 and miR-155, which specifically target the 3′-UTR of SATB1 to further regulate its expression. We conclude that FOXP3-regulated miRs form part of the mechanism by which FOXP3 prevents the transformation of the healthy breast epithelium to a cancerous phenotype. Approaches aimed at restoring FOXP3 function and the miRs it regulates could help provide new approaches to target breast cancer.N McInnes, TJ Sadlon, CY Brown, S Pederson, M Beyer, JL Schultze, S McColl, GJ Goodall and SC Barr
- …