588 research outputs found
The information paradox: conflicts and resolutions
Many relativists have been long convinced that black hole evaporation leads
to information loss or remnants. String theorists have however not been too
worried about the issue, largely due to a belief that the Hawking argument for
information loss is flawed in its details. A recently derived inequality shows
that the Hawking argument for black holes with horizon can in fact be made
rigorous. What happens instead is that in string theory black hole microstates
have no horizons. Thus the evolution of radiation quanta with E ~ kT is
modified by order unity at the horizon, and we resolve the information paradox.
We discuss how it is still possible for E >> kT objects to see an approximate
black hole like geometry. We also note some possible implications of this
physics for the early Universe.Comment: 26 pages, 8 figures, Latex; (Expanded version of) proceedings for
Lepton-Photon 201
Comments on black holes I: The possibility of complementarity
We comment on a recent paper of Almheiri, Marolf, Polchinski and Sully who
argue against black hole complementarity based on the claim that an infalling
observer 'burns' as he approaches the horizon. We show that in fact
measurements made by an infalling observer outside the horizon are
statistically identical for the cases of vacuum at the horizon and radiation
emerging from a stretched horizon. This forces us to follow the dynamics all
the way to the horizon, where we need to know the details of Planck scale
physics. We note that in string theory the fuzzball structure of microstates
does not give any place to 'continue through' this Planck regime. AMPS argue
that interactions near the horizon preclude traditional complementarity. But
the conjecture of 'fuzzball complementarity' works in the opposite way: the
infalling quantum is absorbed by the fuzzball surface, and it is the resulting
dynamics that is conjectured to admit a complementary description.Comment: 34 pages, 6 figures, v3: clarifications & references adde
Excitations in the deformed D1D5 CFT
We perform some simple computations for the first order deformation of the
D1D5 CFT off its orbifold point. It had been shown earlier that under this
deformation the vacuum state changes to a squeezed state (with the further
action of a supercharge). We now start with states containing one or two
initial quanta and write down the corresponding states obtained under the
action of deformation operator. The result is relevant to the evolution of an
initial excitation in the CFT dual to the near extremal D1D5 black hole: when a
left and a right moving excitation collide in the CFT, the deformation operator
spreads their energy over a larger number of quanta, thus evolving the state
towards the infrared.Comment: 26 pages, Latex, 4 figure
Deforming the D1D5 CFT away from the orbifold point
The D1D5 brane bound state is believed to have an `orbifold point' in its
moduli space which is the analogue of the free Yang Mills theory for the D3
brane bound state. The supergravity geometry generated by D1 and D5 branes is
described by a different point in moduli space, and in moving towards this
point we have to deform the CFT by a marginal operator: the `twist' which links
together two copies of the CFT. In this paper we find the effect of this
deformation operator on the simplest physical state of the CFT -- the Ramond
vacuum. The twist deformation leads to a final state that is populated by pairs
of excitations like those in a squeezed state. We find the coefficients
characterizing the distribution of these particle pairs (for both bosons and
fermions) and thus write this final state in closed form.Comment: 30 pages, 4 figures, Late
Black-hole entropy from supergravity superstrata states
This work of JdB was supported in part by the Foundation of Fundamental Research on Matter (FOM) and by an NWO Spinoza grant. The work of MS was
supported in part by Grant-in-Aid for Young Scientists (B) 24740159 from the Japan Society for the Promotion of Science
(JSPS)
Modular differential equations for characters of RCFT
We discuss methods, based on the theory of vector-valued modular forms, to
determine all modular differential equations satisfied by the conformal
characters of RCFT; these modular equations are related to the null vector
relations of the operator algebra. Besides describing effective algorithmic
procedures, we illustrate our methods on an explicit example.Comment: 13 page
Emission from the D1D5 CFT: Higher Twists
We study a certain class of nonextremal D1D5 geometries and their ergoregion
emission. Using a detailed CFT computation and the formalism developed in
arXiv:0906.2015 [hep-th], we compute the full spectrum and rate of emission
from the geometries and find exact agreement with the gravity answer.
Previously, only part of the spectrum had been reproduced using a CFT
description. We close with a discussion of the context and significance of the
calculation.Comment: 39 pages, 6 figures, late
An Exact Fluctuating 1/2-BPS Configuration
This work explores the role of thermodynamic fluctuations in the two
parameter giant and superstar configurations characterized by an ensemble of
arbitrary liquid droplets or irregular shaped fuzzballs. Our analysis
illustrates that the chemical and state-space geometric descriptions exhibit an
intriguing set of exact pair correction functions and the global correlation
lengths. The first principle of statistical mechanics shows that the possible
canonical fluctuations may precisely be ascertained without any approximation.
Interestingly, our intrinsic geometric study exemplifies that there exist exact
fluctuating 1/2-BPS statistical configurations which involve an ensemble of
microstates describing the liquid droplets or fuzzballs. The Gaussian
fluctuations over an equilibrium chemical and state-space configurations
accomplish a well-defined, non-degenerate, curved and regular intrinsic
Riemannian manifolds for all physically admissible domains of black hole
parameters. An explicit computation demonstrates that the underlying chemical
correlations involve ordinary summations, whilst the state-space correlations
may simply be depicted by standard polygamma functions. Our construction
ascribes definite stability character to the canonical energy fluctuations and
to the counting entropy associated with an arbitrary choice of excited boxes
from an ensemble of ample boxes constituting a variety of Young tableaux.Comment: Minor changes, added references, 30 pages, 4 figures, PACS numbers:
04.70.-s: Physics of black holes; 04.70.-Bw: Classical black holes; 04.50.Gh
Higher-dimensional black holes, black strings, and related objects; 04.60.Cf
Gravitational aspects of string theory, accepted for publication in JHE
Intertwining Relations for the Deformed D1D5 CFT
The Higgs branch of the D1D5 system flows in the infrared to a
two-dimensional N=(4,4) SCFT. This system is believed to have an "orbifold
point" in its moduli space where the SCFT is a free sigma model with target
space the symmetric product of copies of four-tori; however, at the orbifold
point gravity is strongly coupled and to reach the supergravity point one needs
to turn on the four exactly marginal deformations corresponding to the blow-up
modes of the orbifold SCFT. Recently, technology has been developed for
studying these deformations and perturbing the D1D5 CFT off its orbifold point.
We present a new method for computing the general effect of a single
application of the deformation operators. The method takes the form of
intertwining relations that map operators in the untwisted sector before
application of the deformation operator to operators in the 2-twisted sector
after the application of the deformation operator. This method is
computationally more direct, and may be of theoretical interest. This line of
inquiry should ultimately have relevance for black hole physics.Comment: latex, 23 pages, 3 figure
Black Hole Deconstruction
A D4-D0 black hole can be deconstructed into a bound state of D0 branes with
a D6-anti-D6 pair containing worldvolume fluxes. The exact spacetime solution
is known and resembles a D0 accretion disk surrounding a D6-anti-D6 core. We
find a scaling limit in which the disk and core drop inside an AdS_2 throat.
Crossing this AdS_2 throat and the D0 accretion disk into the core, we find a
second scaling region describing the D6-anti-D6 pair. It is shown that the
M-theory lift of this region is AdS_3 x S^2. Surprisingly, time translations in
the far asymptotic region reduce to global, rather than Poincare, time
translations in this core AdS_3. We further find that the quantum mechanical
ground state degeneracy reproduces the Bekenstein-Hawking entropy-area law.Comment: 11 page
- …
