164 research outputs found

    The origin of large molecules in primordial autocatalytic reaction networks

    Get PDF
    Large molecules such as proteins and nucleic acids are crucial for life, yet their primordial origin remains a major puzzle. The production of large molecules, as we know it today, requires good catalysts, and the only good catalysts we know that can accomplish this task consist of large molecules. Thus the origin of large molecules is a chicken and egg problem in chemistry. Here we present a mechanism, based on autocatalytic sets (ACSs), that is a possible solution to this problem. We discuss a mathematical model describing the population dynamics of molecules in a stylized but prebiotically plausible chemistry. Large molecules can be produced in this chemistry by the coalescing of smaller ones, with the smallest molecules, the `food set', being buffered. Some of the reactions can be catalyzed by molecules within the chemistry with varying catalytic strengths. Normally the concentrations of large molecules in such a scenario are very small, diminishing exponentially with their size. ACSs, if present in the catalytic network, can focus the resources of the system into a sparse set of molecules. ACSs can produce a bistability in the population dynamics and, in particular, steady states wherein the ACS molecules dominate the population. However to reach these steady states from initial conditions that contain only the food set typically requires very large catalytic strengths, growing exponentially with the size of the catalyst molecule. We present a solution to this problem by studying `nested ACSs', a structure in which a small ACS is connected to a larger one and reinforces it. We show that when the network contains a cascade of nested ACSs with the catalytic strengths of molecules increasing gradually with their size (e.g., as a power law), a sparse subset of molecules including some very large molecules can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio

    Interaction effects on common measures of sensitivity:Choice of measure, type I error, and power

    Get PDF
    Here we use simulation to assess previously unaddressed problems in the assessment of statistical interactions in detection and recognition tasks. The proportion of hits and false-alarms made by an observer on such tasks is affected by both their sensitivity and bias, and numerous measures have been developed to separate out these two factors. Each of these measures makes different assumptions regarding the underlying process and different predictions as to how false-alarm and hit rates should covary. Previous simulations have shown that choice of an inappropriate measure can lead to inflated type I error rates, or reduced power, for main effects, provided there are differences in response bias between the conditions being compared. Interaction effects pose a particular problem in this context. We show that spurious interaction effects in analysis of variance can be produced, or true interactions missed, even in the absence of variation in bias. Additional simulations show that variation in bias complicates patterns of type I error and power further. This under-appreciated fact has the potential to greatly distort the assessment of interactions in detection and recognition experiments. We discuss steps researchers can take to mitigate their chances of making an error

    Adverse childhood experiences and prescription drug use in a cohort study of adult HMO patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prescription drugs account for approximately 11% of national health expenditures. Prior research on adverse childhood experiences (ACEs), which include common forms of child maltreatment and related traumatic stressors, has linked them to numerous health problems. However, data about the relationship of these experiences to prescription drug use are scarce.</p> <p>Method</p> <p>We used the ACE Score (an integer count of 8 different categories of ACEs) as a measure of cumulative exposure to traumatic stress during childhood. We prospectively assessed the relationship of the Score to prescription drug use in a cohort of 15,033 adult HMO patients (mean follow-up: 6.1 years) and assessed mediation of this relationship by documented ACE-related health and social problems.</p> <p>Results</p> <p>Nearly 1.2 million prescriptions were recorded; prescriptions rates increased in a graded fashion as the ACE Score increased (p for trend < 0.0001). Compared to persons with an ACE Score of 0, persons with a Score ≥ 5 had rates increased by 40%; graded relationships were seen for all age groups (18–44, 45–64, and 65–89 years) (p for trend < 0.01). Graded relationships were observed for the risk of being in the upper decile of number of classes of drugs used; persons with scores of ≥ 5 had this risk increased 2-fold. Adjustment for ACE-related health problems reduced the strength of the associations by more than 60%.</p> <p>Conclusion</p> <p>ACEs substantially increase the number of prescriptions and classes of drugs used for as long as 7 or 8 decades after their occurrence. The increases in prescription drug use were largely mediated by documented ACE-related health and social problems.</p

    Changes in Treatment Content of Services During Trauma-informed Integrated Services for Women with Co-occurring Disorders

    Get PDF
    The experience of trauma is highly prevalent in the lives of women with mental health and substance abuse problems. We examined how an intervention targeted to provide trauma-informed integrated services in the treatment of co-occurring disorders has changed the content of services reported by clients. We found that the intervention led to an increased provision of integrated services as well as services addressing each content area: trauma, mental health and substance abuse. There was no increase in service quantity from the intervention. Incorporation of trauma-specific element in the treatment of mental health and substance abuse may have been successfully implemented at the service level thereby better serve women with complex behavioral health histories

    Expert opinion on detecting and treating depression in palliative care: A Delphi study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a dearth of data regarding the optimal method of detecting and treating depression in palliative care. This study applied the Delphi method to evaluate expert opinion on choice of screening tool, choice of antidepressant and choice of psychological therapy. The aim was to inform the development of best practice recommendations for the European Palliative Care Research Collaborative clinical practice guideline on managing depression in palliative care.</p> <p>Methods</p> <p>18 members of an international, multi-professional expert group completed a structured questionnaire in two rounds, rating their agreement with proposed items on a scale from 0-10 and annotating with additional comments. The median and range were calculated to give a statistical average of the experts' ratings.</p> <p>Results</p> <p>There was contention regarding the benefits of screening, with 'routine informal asking' (median 8.5 (0-10)) rated more highly than formal screening tools such as the Hospital Anxiety and Depression Scale (median 7.0 (1-10). Mirtazapine (median 9 (7-10) and citalopram (median 9 (5-10) were the considered the best choice of antidepressant and cognitive behavioural therapy (median 9.0 (3-10) the best choice of psychological therapy.</p> <p>Conclusions</p> <p>The range of expert ratings was broad, indicating discordance in the views of experts. Direct comparative data from randomised controlled trials are needed to strengthen the evidence-base and achieve clarity on how best to detect and treat depression in this setting.</p

    Online prediction of others’ actions: the contribution of the target object, action context and movement kinematics

    Get PDF
    Previous research investigated the contributions of target objects, situational context and movement kinematics to action prediction separately. The current study addresses how these three factors combine in the prediction of observed actions. Participants observed an actor whose movements were constrained by the situational context or not, and object-directed or not. After several steps, participants had to indicate how the action would continue. Experiment 1 shows that predictions were most accurate when the action was constrained and object-directed. Experiments 2A and 2B investigated whether these predictions relied more on the presence of a target object or cues in the actor’s movement kinematics. The target object was artificially moved to another location or occluded. Results suggest a crucial role for kinematics. In sum, observers predict actions based on target objects and situational constraints, and they exploit subtle movement cues of the observed actor rather than the direct visual information about target objects and context

    Quantifying the Spatial Ecology of Wide-Ranging Marine Species in the Gulf of California: Implications for Marine Conservation Planning

    Get PDF
    There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25–40%), particularly, the best quality habitats (46–57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks

    Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanical properties of wood are largely determined by the orientation of cellulose microfibrils in secondary cell walls. Several genes and their allelic variants have previously been found to affect microfibril angle (MFA) and wood stiffness; however, the molecular mechanisms controlling microfibril orientation and mechanical strength are largely uncharacterised. In the present study, cDNA microarrays were used to compare gene expression in developing xylem with contrasting stiffness and MFA in juvenile <it>Pinus radiata </it>trees in order to gain further insights into the molecular mechanisms underlying microfibril orientation and cell wall mechanics.</p> <p>Results</p> <p>Juvenile radiata pine trees with higher stiffness (HS) had lower MFA in the earlywood and latewood of each ring compared to low stiffness (LS) trees. Approximately 3.4 to 14.5% out of 3, 320 xylem unigenes on cDNA microarrays were differentially regulated in juvenile wood with contrasting stiffness and MFA. Greater variation in MFA and stiffness was observed in earlywood compared to latewood, suggesting earlywood contributes most to differences in stiffness; however, 3-4 times more genes were differentially regulated in latewood than in earlywood. A total of 108 xylem unigenes were differentially regulated in juvenile wood with HS and LS in at least two seasons, including 43 unigenes with unknown functions. Many genes involved in cytoskeleton development and secondary wall formation (cellulose and lignin biosynthesis) were preferentially transcribed in wood with HS and low MFA. In contrast, several genes involved in cell division and primary wall synthesis were more abundantly transcribed in LS wood with high MFA.</p> <p>Conclusions</p> <p>Microarray expression profiles in <it>Pinus radiata </it>juvenile wood with contrasting stiffness has shed more light on the transcriptional control of microfibril orientation and the mechanical properties of wood. The identified candidate genes provide an invaluable resource for further gene function and association genetics studies aimed at deepening our understanding of cell wall biomechanics with a view to improving the mechanical properties of wood.</p

    Age-Dependent Targeting of Protein Phosphatase 1 to Ca2+/Calmodulin-Dependent Protein Kinase II by Spinophilin in Mouse Striatum

    Get PDF
    Mechanisms underlying age-dependent changes of dendritic spines on striatal medium spiny neurons are poorly understood. Spinophilin is an F-actin- and protein phosphatase 1 (PP1)-binding protein that targets PP1 to multiple downstream effectors to modulate dendritic spine morphology and function. We found that calcium/calmodulin-dependent protein kinase II (CaMKII) directly and indirectly associates with N- and C-terminal domains of spinophilin, but F-actin can displace CaMKII from the N-terminal domain. Spinophilin co-localizes PP1 with CaMKII on the F-actin cytoskeleton in heterologous cells, and spinophilin co-localizes with synaptic CaMKII in neuronal cultures. Thr286 autophosphorylation enhances the binding of CaMKII to spinophilin in vitro and in vivo. Although there is no change in total levels of Thr286 autophosphorylation, maturation from postnatal day 21 into adulthood robustly enhances the levels of CaMKII that co-immunoprecipitate with spinophilin from mouse striatal extracts. Moreover, N- and C-terminal domain fragments of spinophilin bind more CaMKII from adult vs. postnatal day 21 striatal lysates. Total levels of other proteins that interact with C-terminal domains of spinophilin decrease during maturation, perhaps reducing competition for CaMKII binding to the C-terminal domain. In contrast, total levels of Îą-internexin and binding of Îą-internexin to the spinophilin N-terminal domain increases with maturation, perhaps bridging an indirect interaction with CaMKII. Moreover, there is an increase in the levels of myosin Va, Îą-internexin, spinophilin, and PP1 in striatal CaMKII immune complexes isolated from adult and aged mice compared to those from postnatal day 21. These changes in spinophilin/CaMKII interactomes may contribute to changes in striatal dendritic spine density, morphology, and function during normal postnatal maturation and aging
    • …
    corecore