1,331 research outputs found

    Adipogenic Differentiation of hMSCs is Mediated by Recruitment of IGF-1r Onto the Primary Cilium Associated With Cilia Elongation

    Get PDF
    Funded by Marie Curie Intra European Fellowship (GENOMICDIFF) Wellcome Trust 08471

    Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models

    Get PDF
    Organ-on-chip (OOC) systems recapitulate key biological processes and responses in vitro exhibited by cells, tissues, and organs in vivo. Accordingly, these models of both health and disease hold great promise for improving fundamental research, drug development, personalized medicine, and testing of pharmaceuticals, food substances, pollutants etc. Cells within the body are exposed to biomechanical stimuli, the nature of which is tissue specific and may change with disease or injury. These biomechanical stimuli regulate cell behavior and can amplify, annul, or even reverse the response to a given biochemical cue or drug candidate. As such, the application of an appropriate physiological or pathological biomechanical environment is essential for the successful recapitulation of in vivo behavior in OOC models. Here we review the current range of commercially available OOC platforms which incorporate active biomechanical stimulation. We highlight recent findings demonstrating the importance of including mechanical stimuli in models used for drug development and outline emerging factors which regulate the cellular response to the biomechanical environment. We explore the incorporation of mechanical stimuli in different organ models and identify areas where further research and development is required. Challenges associated with the integration of mechanics alongside other OOC requirements including scaling to increase throughput and diagnostic imaging are discussed. In summary, compelling evidence demonstrates that the incorporation of biomechanical stimuli in these OOC or microphysiological systems is key to fully replicating in vivo physiology in health and disease

    Predicting the long-term impact of antiretroviral therapy scale-up on population incidence of tuberculosis.

    Get PDF
    OBJECTIVE: To investigate the impact of antiretroviral therapy (ART) on long-term population-level tuberculosis disease (TB) incidence in sub-Saharan Africa. METHODS: We used a mathematical model to consider the effect of different assumptions about life expectancy and TB risk during long-term ART under alternative scenarios for trends in population HIV incidence and ART coverage. RESULTS: All the scenarios we explored predicted that the widespread introduction of ART would initially reduce population-level TB incidence. However, many modelled scenarios projected a rebound in population-level TB incidence after around 20 years. This rebound was predicted to exceed the TB incidence present before ART scale-up if decreases in HIV incidence during the same period were not sufficiently rapid or if the protective effect of ART on TB was not sustained. Nevertheless, most scenarios predicted a reduction in the cumulative TB incidence when accompanied by a relative decline in HIV incidence of more than 10% each year. CONCLUSIONS: Despite short-term benefits of ART scale-up on population TB incidence in sub-Saharan Africa, longer-term projections raise the possibility of a rebound in TB incidence. This highlights the importance of sustaining good adherence and immunologic response to ART and, crucially, the need for effective HIV preventive interventions, including early widespread implementation of ART

    An in vitro investigation of the inflammatory response to the strain amplitudes which occur during high frequency oscillation ventilation and conventional mechanical ventilation

    Get PDF
    The research was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College Londo

    Will all scientists working on snails and the diseases they transmit please stand up?

    Get PDF
    Copyright © 2012 Adema et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.No abstract available

    Differential spatial repositioning of activated genes in Biomphalaria glabrata snails infected with Schistosoma mansoni

    Get PDF
    Copyright @ 2014 Arican-Goktas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships.NIH and Sandler Borroughs Wellcome Travel Fellowshi

    The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket

    Get PDF
    P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism

    Criminal and Noncriminal Psychopathy: The Devil is in the Detail

    Get PDF
    Brooks, NS ORCiD: 0000-0003-1784-099XPsychopathy is prevalent and problematic in criminal populations, but is also found to be present in noncriminal populations. In 1992, Robert Hare declared that psychopaths may also “be found in the boardroom”, which has since been followed by an interest in the issue of noncriminal, or even successful, psychopathy. In this chapter, the paradox of criminal and noncriminal psychopathy is discussed with specific attention given to the similarities and differences that account for psychopathic personality across contexts. That psychopathy is a condition typified by a constellation of traits and behaviours requires wider research across diverse populations, and thus the streams of research related to criminal and noncriminal psychopathy are presented and the implications of these contrasting streams are explored

    Itch and skin rash from chocolate during fluoxetine and sertraline treatment: Case report

    Get PDF
    BACKGROUND: The skin contains a system for producing serotonin as well as serotonin receptors. Serotonin can also cause pruritus when injected into the skin. SSRI-drugs increase serotonin concentrations and are known to have pruritus and other dermal side effects. CASE PRESENTATION: A 46-year-old man consulted his doctor due to symptoms of depression. He did not suffer from any allergy but drinking red wine caused vasomotor rhinitis. Antidepressive treatment with fluoxetine 20 mg daily was initiated which was successful. After three weeks of treatment an itching rash appeared. An adverse drug reaction (ADR) induced by fluoxetine was suspected and fluoxetine treatment was discontinued. The symptoms disappeared with clemastine and betametasone treatment. Since the depressive symptoms returned sertraline medication was initiated. After approximately two weeks of sertraline treatment he noted an intense itching sensation in his scalp after eating a piece of chocolate cake. The itch spread to the arms, abdomen and legs and the patient treated himself with clemastine and the itch disappeared. He now realised that he had eaten a chocolate cake before this episode and remembered that before the first episode he had had a chocolate mousse dessert. He had never had any reaction from eating chocolate before and therefore reported this observation to his doctor. CONCLUSIONS: This case report suggests that there may be individuals that are very sensitive to increases in serotonin concentrations. Dermal side reactions to SSRI-drugs in these patients may be due to high activity in the serotonergic system at the dermal and epidermo-dermal junctional area rather than a hypersensitivity to the drug molecule itself
    corecore