11 research outputs found

    Genetic parameters for social effects on survival in cannibalistic layers: Combining survival analysis and a linear animal model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mortality due to cannibalism in laying hens is a difficult trait to improve genetically, because censoring is high (animals still alive at the end of the testing period) and it may depend on both the individual itself and the behaviour of its group members, so-called associative effects (social interactions). To analyse survival data, survival analysis can be used. However, it is not possible to include associative effects in the current software for survival analysis. A solution could be to combine survival analysis and a linear animal model including associative effects. This paper presents a two-step approach (2STEP), combining survival analysis and a linear animal model including associative effects (LAM).</p> <p>Methods</p> <p>Data of three purebred White Leghorn layer lines from Institut de Sélection Animale B.V., a Hendrix Genetics company, were used in this study. For the statistical analysis, survival data on 16,780 hens kept in four-bird cages with intact beaks were used. Genetic parameters for direct and associative effects on survival time were estimated using 2STEP. Cross validation was used to compare 2STEP with LAM. LAM was applied directly to estimate genetic parameters for social effects on observed survival days.</p> <p>Results</p> <p>Using 2STEP, total heritable variance, including both direct and associative genetic effects, expressed as the proportion of phenotypic variance, ranged from 32% to 64%. These results were substantially larger than when using LAM. However, cross validation showed that 2STEP gave approximately the same survival curves and rank correlations as LAM. Furthermore, cross validation showed that selection based on both direct and associative genetic effects, using either 2STEP or LAM, gave the best prediction of survival time.</p> <p>Conclusion</p> <p>It can be concluded that 2STEP can be used to estimate genetic parameters for direct and associative effects on survival time in laying hens. Using 2STEP increased the heritable variance in survival time. Cross validation showed that social genetic effects contribute to a large difference in survival days between two extreme groups. Genetic selection targeting both direct and associative effects is expected to reduce mortality due to cannibalism in laying hens.</p

    Re-interpreting conventional interval estimates taking into account bias and extra-variation

    Get PDF
    BACKGROUND: The study design with the smallest bias for causal inference is a perfect randomized clinical trial. Since this design is often not feasible in epidemiologic studies, an important challenge is to model bias properly and take random and systematic variation properly into account. A value for a target parameter might be said to be "incompatible" with the data (under the model used) if the parameter's confidence interval excludes it. However, this "incompatibility" may be due to bias and/or extra-variation. DISCUSSION: We propose the following way of re-interpreting conventional results. Given a specified focal value for a target parameter (typically the null value, but possibly a non-null value like that representing a twofold risk), the difference between the focal value and the nearest boundary of the confidence interval for the parameter is calculated. This represents the maximum correction of the interval boundary, for bias and extra-variation, that would still leave the focal value outside the interval, so that the focal value remained "incompatible" with the data. We describe a short example application concerning a meta analysis of air versus pure oxygen resuscitation treatment in newborn infants. Some general guidelines are provided for how to assess the probability that the appropriate correction for a particular study would be greater than this maximum (e.g. using knowledge of the general effects of bias and extra-variation from published bias-adjusted results). SUMMARY: Although this approach does not yet provide a method, because the latter probability can not be objectively assessed, this paper aims to stimulate the re-interpretation of conventional confidence intervals, and more and better studies of the effects of different biases

    Utility of whole-genome sequence data for across-breed genomic prediction

    Get PDF
    Background: Genomic prediction (GP) across breeds has so far resulted in low accuracies of the predicted genomic breeding values. Our objective was to evaluate whether using whole-genome sequence (WGS) instead of low-density markers can improve GP across breeds, especially when markers are pre-selected from a genome-wide association study (GWAS), and to test our hypothesis that many non-causal markers in WGS data have a diluting effect on accuracy of across-breed prediction. Methods: Estimated breeding values for stature and bovine high-density (HD) genotypes were available for 595 Jersey bulls from New Zealand, 957 Holstein bulls from New Zealand and 5553 Holstein bulls from the Netherlands. BovineHD genotypes for all bulls were imputed to WGS using Beagle4 and Minimac2. Genomic prediction across the three populations was performed with ASReml4, with each population used as single reference and as single validation sets. In addition to the 50k, HD and WGS, markers that were significantly associated with stature in a large meta-GWAS analysis were selected and used for prediction, resulting in 10 prediction scenarios. Furthermore, we estimated the proportion of genetic variance captured by markers in each scenario. Results: Across breeds, 50k, HD and WGS markers resulted in very low accuracies of prediction ranging from − 0.04 to 0.13. Accuracies were higher in scenarios with pre-selected markers from a meta-GWAS. For example, using only the 133 most significant markers in 133 QTL regions from the meta-GWAS yielded accuracies ranging from 0.08 to 0.23, while 23,125 markers with a − log10(p) higher than 7 resulted in accuracies of up 0.35. Using WGS data did not significantly improve the proportion of genetic variance captured across breeds compared to scenarios with few but pre-selected markers. Conclusions: Our results demonstrated that the accuracy of across-breed GP can be improved by using markers that are pre-selected from WGS based on their potential causal effect. We also showed that simply increasing the number of markers up to the WGS level does not increase the accuracy of across-breed prediction, even when markers that are expected to have a causal effect are included
    corecore