5,328 research outputs found

    Social interactions through the eyes of macaques and humans

    Get PDF
    Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions) to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression). Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys’ gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of social attention between rhesus macaques and humans

    Antioxidant, antiproliferative properties of Hagenia abyssinica roots and their potentially active components

    Get PDF
    Hagenia abyssinica (Bruce) J. F. Gmel. is a multipurpose dioecious tree that has been used to treat various ailments, for example, the flowers of H. abyssinica have been widely used as a tea to treat intestinal parasites by local residents and the roots of H. abyssinica could also be used for anticancer purposes. Antioxidant activity could be one of the most important pathways to suppress cancer and there is hardly any information available on the specific chemical components corresponding to the bioactivities of H. abyssinica to date. The present study intended to screen and evaluate the antioxidant and anti‐proliferative properties of five different fractions from H. abyssinica along with their corresponding total flavonoid and phenolic contents and then further identify those compounds with the most potent antioxidant and anti‐proliferative activities using high performance liquid chromatography (HPLC) coupled to mass spectrometry (MS) and nuclear magnetic resonance (NMR). The total flavonoid and phenolic content assays showed that the ethyl acetate (EA) fraction of H. abyssinica had higher flavonoid and phenolic levels than the other four fractions. Furthermore, the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) superoxide radical scavenging abilities, total antioxidant capacity (TAC) assay with 2,2’‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulfonic acid (ABTS), and ferric‐reducing antioxidant power (FRAP) were measured to evaluate the antioxidant activities of the five fractions and some pure compounds isolated from the EA fraction, which displayed higher antioxidant properties than that of the other fractions. Caffeic acid from the EA fraction showed even stronger DPPH scavenging ability (IC50 7.858 ± 0.31 µg/mL) than that of Vc (IC50 8.27 ± 0.11 µg/mL) as the positive control. The anti‐proliferative properties of four fractions and the ethanol extract were evaluated by the 3‐(4,5)‐dimethylthiahiazo (‐z‐y1)‐3,5‐di‐ phenytetrazoliumromide (MTT) assay and the EA fraction exhibited higher anti‐proliferative activities against three cancer cell lines than that of the other fractions. Additionally, the compounds with good antioxidant activity from the EA fraction of H. abyssinica were screened and identified using LC‐MS and NMR and were also found to possess good anti‐proliferative activity. In the MTT assay, the quercetin showed the strongest dose‐dependent anti‐proliferative activities to colon cancer cells (HT‐29) and liver cancer cells (HepG2) among all of the compounds isolated. This study provided valuable information on the synergistic antioxidant and anti‐proliferative properties of H. abyssinica

    Chemo- and Thermosensory Responsiveness of Grueneberg Ganglion Neurons Relies on Cyclic Guanosine Monophosphate Signaling Elements

    Get PDF
    Neurons of the Grueneberg ganglion (GG) in the anterior nasal region of mouse pups respond to cool temperatures and to a small set of odorants. While the thermosensory reactivity appears to be mediated by elements of a cyclic guanosine monophosphate (cGMP) cascade, the molecular mechanisms underlying the odor-induced responses are unclear. Since odor-responsive GG cells are endowed with elements of a cGMP pathway, specifically the transmembrane guanylyl cyclase subtype GC-G and the cyclic nucleotide-gated ion channel CNGA3, the possibility was explored whether these cGMP signaling elements may also be involved in chemosensory GG responses. Experiments with transgenic mice deficient for GC-G or CNGA3 revealed that GG responsiveness to given odorants was significantly diminished in these knockout animals. These findings suggest that a cGMP cascade may be important for both olfactory and thermosensory signaling in the GG. However, in contrast to the thermosensory reactivity, which did not decline over time, the chemosensory response underwent adaptation upon extended stimulation, suggesting that the two transduction processes only partially overlap. Copyright (C) 2011 S. Karger AG, Base

    Color Differences Highlight Concomitant Polymorphism of Chalcones

    Get PDF
    The meta- and para-nitro isomers of (E)-3′-dimethylamino-nitrochalcone (Gm8m and Gm8p) are shown to exhibit concomitant color polymorphism, with Gm8m appearing as yellow (P2_{1}/c) or orange (P1̅) crystals and Gm8p appearing as red (P2_{1}/n) or black (P2_{1}/c) crystals. Each of the polymorphs was characterized optically via UV–vis spectroscopy, and their thermal behavior was characterized via differential scanning calorimetry and low-temperature powder X-ray diffraction. To assess the effect of molecular configuration and crystal packing on the colors of crystals of the different polymorphs, time dependent density functional theory (ωB97x) calculations were carried out on isolated molecules, dimers, stacks, and small clusters cut from the crystal structures of the four polymorphs. The calculated color comes from several excitations and is affected by conformation and most intermolecular contacts within the crystal, with the color differences between polymorphs mainly being due to the differences in the π–π stacking. The visual differences between these related polymorphic systems make them particularly useful for studying polymorph behavior such as phase transitions and concomitant polymorph growth

    Resonances in J/ψϕπ+πJ/\psi \to \phi \pi ^+\pi ^- and ϕK+K\phi K^+K^-

    Full text link
    A partial wave analysis is presented of J/ψϕπ+πJ/\psi \to \phi \pi ^+\pi ^- and ϕK+K\phi K^+K^- from a sample of 58M J/ψJ/\psi events in the BES II detector. The f0(980)f_0(980) is observed clearly in both sets of data, and parameters of the Flatt\' e formula are determined accurately: M=965±8M = 965 \pm 8 (stat) ±6\pm 6 (syst) MeV/c2^2, g1=165±10±15g_1 = 165 \pm 10 \pm 15 MeV/c2^2, g2/g1=4.21±0.25±0.21g_2/g_1 = 4.21 \pm 0.25 \pm 0.21. The ϕππ\phi \pi \pi data also exhibit a strong ππ\pi \pi peak centred at M=1335M = 1335 MeV/c2^2. It may be fitted with f2(1270)f_2(1270) and a dominant 0+0^+ signal made from f0(1370)f_0(1370) interfering with a smaller f0(1500)f_0(1500) component. There is evidence that the f0(1370)f_0(1370) signal is resonant, from interference with f2(1270)f_2(1270). There is also a state in ππ\pi \pi with M=179030+40M = 1790 ^{+40}_{-30} MeV/c2^2 and Γ=27030+60\Gamma = 270 ^{+60}_{-30} MeV/c2^2; spin 0 is preferred over spin 2. This state, f0(1790)f_0(1790), is distinct from f0(1710)f_0(1710). The ϕKKˉ\phi K\bar K data contain a strong peak due to f2(1525)f_2'(1525). A shoulder on its upper side may be fitted by interference between f0(1500)f_0(1500) and f0(1710)f_0(1710).Comment: 17 pages, 6 figures, 1 table. Submitted to Phys. Lett.

    Measurement of the Branching Fraction of J/psi --> pi+ pi- pi0

    Full text link
    Using 58 million J/psi and 14 million psi' decays obtained by the BESII experiment, the branching fraction of J/psi --> pi+ pi- pi0 is determined. The result is (2.10+/-0.12)X10^{-2}, which is significantly higher than previous measurements.Comment: 9 pages, 8 figures, RevTex

    First Measurements of eta_c Decaying into K^+K^-2(pi^+pi^-) and 3(pi^+pi^-)

    Full text link
    The decays of eta_c to K^+K^-2(pi^+pi^-) and 3(pi^+pi^-) are observed for the first time using a sample of 5.8X10^7 J/\psi events collected by the BESII detector. The product branching fractions are determined to be B(J/\psi-->gamma eta_c)*B(eta_c-->K^+K^-pi^+pi^-pi^+pi^-)=(1.21+-0.32+- 0.23)X10^{-4},B(J/ψ>gammaetac)B(etac>K0Kˉ0pi+pi)=(1.29+0.43+0.32)X104,B(J/\psi-->gamma eta_c)*B(eta_c-->K^{*0}\bar{K}^{*0}pi^+pi^-)= (1.29+-0.43+-0.32)X10^{-4}, and (J/\psi-->gamma eta_c)* B(eta_c-->pi^+pi^-pi^+pi^-pi^+pi^-)= (2.59+-0.32+-0.48)X10^{-4}. The upper limit for eta_c-->phi pi^+pi^-pi^+pi^- is also obtained as B(J/\psi-->gamma eta_c)*B(eta_c--> phi pi^+pi^-pi^+pi^-)< 6.03 X10^{-5} at the 90% confidence level.Comment: 11 pages, 4 figure

    First observation of psi(2S)-->K_S K_L

    Full text link
    The decay psi(2S)-->K_S K_L is observed for the first time using psi(2S) data collected with the Beijing Spectrometer (BESII) at the Beijing Electron Positron Collider (BEPC); the branching ratio is determined to be B(psi(2S)-->K_S K_L) = (5.24\pm 0.47 \pm 0.48)\times 10^{-5}. Compared with J/psi-->K_S K_L, the psi(2S) branching ratio is enhanced relative to the prediction of the perturbative QCD ``12%'' rule. The result, together with the branching ratios of psi(2S) decays to other pseudoscalar meson pairs (\pi^+\pi^- and K^+K^-), is used to investigate the relative phase between the three-gluon and the one-photon annihilation amplitudes of psi(2S) decays.Comment: 5 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let

    Study of psi(2S) decays to X J/psi

    Full text link
    Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million psi(2S) events collected with the BESI detector, the branching fractions of psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) -> pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026 \pm 0.055.Comment: 13 pages, 8 figure
    corecore