2,677 research outputs found

    Biphasic Epoxidation Reaction in the Absence of Surfactants - Integration of Reaction and Separation Steps in Microtubular Reactors

    Get PDF
    This paper presents a paradigm shift with respect to the current direction of biphasic reactions in surfactant-free emulsions. Herein, the contact area between both phases is simply sustained by the reactor design (i.e., diameter of the tubular reactor) compared to the current trend of using reversible/switchable emulsions where the addition of an external agent (e.g., bistable surfactant, magnetic particles, etc.) is required. In this way, temporally stable phase dispersions using microtubular reactors facilitate the integration of reaction and separation steps in biphasic systems without the need for energy-intensive downstream separation steps. In this study, we demonstrate this innovative tool in the epoxidation reaction of sunflower oil with hydrogen peroxide. Using a combination of mechanistic and kinetic studies, we demonstrate that the poor solubility of the catalytic species in the oil phase may be used advantageously, allowing ready recyclability of catalyst (and oxidant) in consecutive runs.The authors thank the UK Engineering and Physical Sciences Research Council for funding via the EPSRC Doctoral Training Centre in Sustainable Chemical Technologies, University of Bath (Grant No. EP/G03768X/1) and a L.T.-M.’s Fellowship award (Grant No. EP/L020432/2).This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acssuschemeng.6b0028

    Biomimetic knee design to improve joint torque and life for bipedal robotics

    Get PDF
    © Springer International Publishing AG, part of Springer Nature 2018. This paper details the design, construction, and performance analysis of a biologically inspired knee joint for use in bipedal robotics. The design copies the condylar surfaces of the distal end of the femur and utilizes the same crossed four-bar linkage design the human knee uses. The joint includes a changing center of rotation, a screw-home mechanism, and patella; these are characteristics of the knee that are desirable to copy for bipedal robotics. The design was calculated to have an average sliding to rolling ratio of 0.079, a maximum moment arm of 2.7 in and a range of motion of 151°. This should reduce wear and perform similar to the human knee. Prototypes of the joint have been created to test these predicted properties

    Favorable outcome of early treatment of new onset child and adolescent migraine-implications for disease modification.

    Get PDF
    There is evidence that the prevalence of migraine in children and adolescents may be increasing. Current theories of migraine pathophysiology in adults suggest activation of central cortical and brainstem pathways in conjunction with the peripheral trigeminovascular system, which ultimately results in release of neuropeptides, facilitation of central pain pathways, neurogenic inflammation surrounding peripheral vessels, and vasodilatation. Although several risk factors for frequent episodic, chronic, and refractory migraine have been identified, the causes of migraine progression are not known. Migraine pathophysiology has not been fully evaluated in children. In this review, we will first discuss the evidence that early therapeutic interventions in the child or adolescent new onset migraineur, may halt or limit progression and disability. We will then review the evidence suggesting that many adults with chronic or refractory migraine developed their migraine as children or adolescents and may not have been treated adequately with migraine-specific therapy. Finally, we will show that early, appropriate and optimal treatment of migraine during childhood and adolescence may result in disease modification and prevent progression of this disease

    The Type IIn Supernova SN 2010bt: The Explosion of a Star in Outburst

    Get PDF
    It is well known that massive stars (M > 8M(circle dot)) evolve up to the collapse of the stellar core, resulting in most cases in a supernova (SN) explosion. Their heterogeneity is related mainly to different configurations of the progenitor star at the moment of the explosion and to their immediate environments. We present photometry and spectroscopy of SN. 2010bt, which was classified as a Type. IIn. SN from a spectrum obtained soon after discovery and was observed extensively for about 2 months. After the seasonal interruption owing to its proximity to the Sun, the SN was below the detection threshold, indicative of a rapid luminosity decline. We can identify the likely progenitor with a very luminous star (log L/L-circle dot approximate to 7) through comparison of Hubble Space Telescope images of the host galaxy prior to explosion with those of the SN obtained after maximum light. Such a luminosity is not expected for a quiescent star, but rather for a massive star in an active phase. This progenitor candidate was later confirmed via images taken in 2015 (similar to 5 yr post-discovery), in which no bright point source was detected at the SN position. Given these results and the SN behavior, we conclude that SN. 2010bt was likely a Type IIn SN and that its progenitor was a massive star that experienced an outburst shortly before the final explosion, leading to a dense H-rich circumstellar environment around the SN progenitor

    Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks

    Full text link
    It is argued that experimental constraints on theories of asymmetric dark matter (ADM) almost certainly require that the DM be part of a richer hidden sector of interacting states of comparable mass or lighter. A general requisite of models of ADM is that the vast majority of the symmetric component of the DM number density must be removed in order to explain the observed relationship ΩBΩDM\Omega_B\sim\Omega_{DM} via the DM asymmetry. Demanding the efficient annihilation of the symmetric component leads to a tension with experimental limits if the annihilation is directly to Standard Model (SM) degrees of freedom. A comprehensive effective operator analysis of the model independent constraints on ADM from direct detection experiments and LHC monojet searches is presented. Notably, the limits obtained essentially exclude models of ADM with mass 1GeVmDM\lesssim m_{DM} \lesssim 100GeV annihilating to SM quarks via heavy mediator states. This motivates the study of portal interactions between the dark and SM sectors mediated by light states. Resonances and threshold effects involving the new light states are shown to be important for determining the exclusion limits.Comment: 18+6 pages, 18 figures. v2: version accepted for publicatio
    corecore