121 research outputs found

    A coarse-to-fine approach to prostate boundary segmentation in ultrasound images

    Get PDF
    BACKGROUND: In this paper a novel method for prostate segmentation in transrectal ultrasound images is presented. METHODS: A segmentation procedure consisting of four main stages is proposed. In the first stage, a locally adaptive contrast enhancement method is used to generate a well-contrasted image. In the second stage, this enhanced image is thresholded to extract an area containing the prostate (or large portions of it). Morphological operators are then applied to obtain a point inside of this area. Afterwards, a Kalman estimator is employed to distinguish the boundary from irrelevant parts (usually caused by shadow) and generate a coarsely segmented version of the prostate. In the third stage, dilation and erosion operators are applied to extract outer and inner boundaries from the coarsely estimated version. Consequently, fuzzy membership functions describing regional and gray-level information are employed to selectively enhance the contrast within the prostate region. In the last stage, the prostate boundary is extracted using strong edges obtained from selectively enhanced image and information from the vicinity of the coarse estimation. RESULTS: A total average similarity of 98.76%(± 0.68) with gold standards was achieved. CONCLUSION: The proposed approach represents a robust and accurate approach to prostate segmentation

    Relative Role of Flower Color and Scent on Pollinator Attraction: Experimental Tests using F1 and F2 Hybrids of Daylily and Nightlily

    Get PDF
    The daylily (Hemerocallis fulva) and nightlily (H. citrina) are typical examples of a butterfly-pollination system and a hawkmoth-pollination system, respectively. H. fulva has diurnal, reddish or orange-colored flowers and is mainly pollinated by diurnal swallowtail butterflies. H. citrina has nocturnal, yellowish flowers with a sweet fragrance and is pollinated by nocturnal hawkmoths. We evaluated the relative roles of flower color and scent on the evolutionary shift from a diurnally flowering ancestor to H. citrina. We conducted a series of experiments that mimic situations in which mutants differing in either flower color, floral scent or both appeared in a diurnally flowering population. An experimental array of 6×6 potted plants, mixed with 24 plants of H. fulva and 12 plants of either F1 or F2 hybrids, were placed in the field, and visitations of swallowtail butterflies and nocturnal hawkmoths were recorded with camcorders. Swallowtail butterflies preferentially visited reddish or orange-colored flowers and hawkmoths preferentially visited yellowish flowers. Neither swallowtail butterflies nor nocturnal hawkmoths showed significant preferences for overall scent emission. Our results suggest that mutations in flower color would be more relevant to the adaptive shift from a diurnally flowering ancestor to H. citrina than that in floral scent

    Regulation of N-WASP and the Arp2/3 Complex by Abp1 Controls Neuronal Morphology

    Get PDF
    Polymerization and organization of actin filaments into complex superstructures is indispensable for structure and function of neuronal networks. We here report that knock down of the F-actin-binding protein Abp1, which is important for endocytosis and synaptic organization, results in changes in axon development virtually identical to Arp2/3 complex inhibition, i.e., a selective increase of axon length. Our in vitro and in vivo experiments demonstrate that Abp1 interacts directly with N-WASP, an activator of the Arp2/3 complex, and releases the autoinhibition of N-WASP in cooperation with Cdc42 and thereby promotes N-WASP-triggered Arp2/3 complex-mediated actin polymerization. In line with our mechanistical studies and the colocalization of Abp1, N-WASP and Arp2/3 at sites of actin polymerization in neurons, we reveal an essential role of Abp1 and its cooperativity with Cdc42 in N-WASP-induced rearrangements of the neuronal cytoskeleton. We furthermore show that introduction of N-WASP mutants lacking the ability to bind Abp1 or Cdc42, Arp2/3 complex inhibition, Abp1 knock down, N-WASP knock down and Arp3 knock down, all cause identical neuromorphological phenotypes. Our data thus strongly suggest that these proteins and their complex formation are important for cytoskeletal processes underlying neuronal network formation

    Docking of Secretory Vesicles Is Syntaxin Dependent

    Get PDF
    Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones

    A Fine-Mapping Study of 7 Top Scoring Genes from a GWAS for Major Depressive Disorder

    Get PDF
    Major depressive disorder (MDD) is a psychiatric disorder that is characterized -amongst others- by persistent depressed mood, loss of interest and pleasure and psychomotor retardation. Environmental circumstances have proven to influence the aetiology of the disease, but MDD also has an estimated 40% heritability, probably with a polygenic background. In 2009, a genome wide association study (GWAS) was performed on the Dutch GAIN-MDD cohort. A non-synonymous coding single nucleotide polymorphism (SNP) rs2522833 in the PCLO gene became only nominally significant after post-hoc analysis with an Australian cohort which used similar ascertainment. The absence of genome-wide significance may be caused by low SNP coverage of genes. To increase SNP coverage to 100% for common variants (m.a.f.>0.1, r2>0.8), we selected seven genes from the GAIN-MDD GWAS: PCLO, GZMK, ANPEP, AFAP1L1, ST3GAL6, FGF14 and PTK2B. We genotyped 349 SNPs and obtained the lowest P-value for rs2715147 in PCLO at P = 6.8E−7. We imputed, filling in missing genotypes, after which rs2715147 and rs2715148 showed the lowest P-value at P = 1.2E−6. When we created a haplotype of these SNPs together with the non-synonymous coding SNP rs2522833, the P-value decreased to P = 9.9E−7 but was not genome wide significant. Although our study did not identify a more strongly associated variant, the results for PCLO suggest that the causal variant is in high LD with rs2715147, rs2715148 and rs2522833

    Specific ant-pollination in an alpine orchid and the role of floral scent in attracting pollinating ants

    Full text link
    Several studies have recently shown that floral scent can deter ants from flowers. However, when ants serve as reliable pollen vectors, for example in harsh, windy habitats, were flying insects are less active, plants should have evolved floral signals to attract them to the flowers. We tested this hypothesis in the alpine orchid, Chamorchis alpina. C. alpina was found to be predominantly ant pollinated, with some occasional pollination by ichneumonid wasps. In all three investigated populations, only two species of ants, Formica lemani and Leptothorax acervorum visited the flowers and removed pollinaria. These two pollinator ants were found to be among the most common ant species in all habitats, but other, non-pollinating ants were also frequently found, suggesting a factor that mediates specific pollination. Floral morphology was found to be compatible with at least one of the common non-pollinator ants. Floral scent consistently comprised five terpenoid compounds, β-phellandrene, 1,8-cineole, linalool, α-terpineol, and β-caryophyllene. A synthetic blend of these five compounds emitting from rubber septa, was found to be attractive to one pollinator ant-species, F. lemani, in the field. The floral scent of C. alpina, through attracting only specific ants, may thus play a role in filtering floral visitors

    Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models.

    Get PDF
    Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence

    Within-individual phenotypic plasticity in flowers fosters pollination niche shift

    Get PDF
    Authors thank Raquel Sánchez, Angel Caravante, Isabel Sánchez Almazo, Tatiana López Pérez, Samuel Cantarero, María José Jorquera and Germán Fernández for helping us during several phases of the study and Iván Rodríguez Arós for drawing the insect silhouettes. This research is supported by grants from the Spanish Ministry of Science, Innovation and Universities (CGL2015-71634-P, CGL2015-63827-P, CGL2017-86626-C2-1-P, CGL2017- 86626-C2-2-P, UNGR15-CE-3315, including EU FEDER funds), Junta de Andalucía (P18- FR-3641), Xunta de Galicia (CITACA), BBVA Foundation (PR17_ECO_0021), and a contract grant to C.A. from the former Spanish Ministry of Economy and Competitiveness (RYC-2012-12277). This is a contribution to the Research Unit Modeling Nature, funded by the Consejería de Economía, Conocimiento, Empresas y Universidad, and European Regional Development Fund (ERDF), reference SOMM17/6109/UGR.Phenotypic plasticity, the ability of a genotype of producing different phenotypes when exposed to different environments, may impact ecological interactions. We study here how within-individual plasticity in Moricandia arvensis flowers modifies its pollination niche. During spring, this plant produces large, cross-shaped, UV-reflecting lilac flowers attracting mostly long-tongued large bees. However, unlike most co-occurring species, M. arvensis keeps flowering during the hot, dry summer due to its plasticity in key vegetative traits. Changes in temperature and photoperiod in summer trigger changes in gene expression and the production of small, rounded, UV-absorbing white flowers that attract a different assemblage of generalist pollinators. This shift in pollination niche potentially allows successful reproduction in harsh conditions, facilitating M. arvensis to face anthropogenic perturbations and climate change. Floral phenotypes impact interactions between plants and pollinators. Here, the authors show that Moricandia arvensis displays discrete seasonal plasticity in floral phenotype, with large, lilac flowers attracting long-tongued bees in spring and small, rounded, white flowers attracting generalist pollinators in summer.Spanish Ministry of Science, Innovation and Universities (EU FEDER funds) CGL2015-71634-P CGL2015-63827-P CGL2017-86626-C2-1-P CGL2017-86626-C2-2-P UNGR15-CE-3315Junta de Andalucia P18-FR-3641Xunta de GaliciaBBVA Foundation PR17_ECO_0021Spanish Ministry of Economy and Competitiveness RYC-2012-12277Consejeria de Economia, Conocimiento, Empresas y Universidad SOMM17/6109/UGREuropean Union (EU) SOMM17/6109/UG

    Mutations in Wnt2 Alter Presynaptic Motor Neuron Morphology and Presynaptic Protein Localization at the Drosophila Neuromuscular Junction

    Get PDF
    Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins
    corecore