191 research outputs found
Evaluation of health care providers’ role transition and satisfaction in hospital-at-home for chronic obstructive pulmonary disease exacerbations: a survey study
__Abstract__
__Background__: Hospital-at-home is an accepted alternative for usual hospital treatment for patients with a Chronic
Obstructive Pulmonary Disease (COPD) exacerbation. The introduction of hospital-at-home may lead to changes in
health care providers’ roles and responsibilit
Mutation Accumulation May Be a Minor Force in Shaping Life History Traits
Is senescence the adaptive result of tradeoffs between younger and older ages or the nonadaptive burden of deleterious mutations that act at older ages? To shed new light on this unresolved question we combine adaptive and nonadaptive processes in a single model. Our model uses Penna's bit-strings to capture different age-specific mutational patterns. Each pattern represents a genotype and for each genotype we find the life history strategy that maximizes fitness. Genotypes compete with each other and are subject to selection and to new mutations over generations until equilibrium in gene-frequencies is reached. The mutation-selection equilibrium provides information about mutational load and the differential effects of mutations on a life history trait - the optimal age at maturity. We find that mutations accumulate only at ages with negligible impact on fitness and that mutation accumulation has very little effect on the optimal age at maturity. These results suggest that life histories are largely determined by adaptive processes. The non-adaptive process of mutation accumulation seems to be unimportant at evolutionarily relevant ages
Implications of Advancing Paternal Age: Does It Affect Offspring School Performance?
Average paternal age is increasing in many high income countries, but the implications of this demographic shift for child health and welfare are poorly understood. There is equivocal evidence that children of older fathers are at increased risk of neurodevelopmental disorders and reduced IQ. We therefore report here on the relationship between paternal age and a composite indicator of scholastic achievement during adolescence, i.e. compulsory school leaving grades, among recent birth cohorts in Stockholm County where delayed paternity is notably common. We performed a record-linkage study comprising all individuals in Stockholm County who finished 9 years of compulsory school from 2000 through 2007 (n = 155,875). Data on school leaving grades and parental characteristics were retrieved from administrative and health service registers and analyzed using multiple linear regression. Advancing paternal age at birth was not associated with a decrease in school leaving grades in adolescent offspring. After adjustment for year of graduation, maternal age and parental education, country of birth and parental mental health service use, offspring of fathers aged 50 years or older had on average 0.3 (95% CI −3.8, 4.4) points higher grades than those of fathers aged 30–34 years. In conclusion, advancing paternal age is not associated with poorer school performance in adolescence. Adverse effects of delayed paternity on offspring cognitive function, if any, may be counterbalanced by other potential advantages for children born to older fathers
Gene duplications and evolution of vertebrate voltage-gated sodium channels
Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Molecular Evolution 63 (2006): 208-221, doi:10.1007/s00239-005-0287-9.Voltage-gated sodium channels underlie action potential generation in excitable tissue.
To establish the evolutionary mechanisms that shaped the vertebrate sodium channel
a-subunit (SCNA) gene family and their encoded Nav1 proteins, we identified all SCNA
genes in several teleost species. Molecular cloning revealed that teleosts have eight
SCNA genes, comparable to the number in another vertebrate lineage, mammals.
Prior phylogenetic analyses had indicated that teleosts and tetrapods share four
monophyletic groups of SCNA genes and that tandem duplications selectively
expanded the number of genes in two of the four mammalian groups. However, the
number of genes in each group varies between teleosts and tetrapods suggesting
different evolutionary histories in the two vertebrate lineages. Our findings from
phylogenetic analysis and chromosomal mapping of Danio rerio genes indicate that
tandem duplications are an unlikely mechanism for generation of the extant teleost
SCNA genes. Instead, analysis of other closely mapped genes in D. rerio supports the
hypothesis that a whole genome duplication was involved in expansion of the SCNA
gene family in teleosts. Interestingly, despite their different evolutionary histories,
mRNA analyses demonstrated a conservation of expression patterns for SCNA
orthologues in teleosts and tetrapods, suggesting functional conservation.The authors’ work was supported by NIH grants (NS 38937; AEN,
ADT and ABR, NS 25513; HHZ and YL and NSF IBN 0236147; MCJ)
Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.
Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction
Beyond R0 : demographic models for variability of lifetime reproductive output
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e20809, doi:10.1371/journal.pone.0020809.The net reproductive rate measures the expected lifetime reproductive output of an individual, and plays an important role in demography, ecology, evolution, and epidemiology. Well-established methods exist to calculate it from age- or stage-classified demographic data. As an expectation, provides no information on variability; empirical measurements of lifetime reproduction universally show high levels of variability, and often positive skewness among individuals. This is often interpreted as evidence of heterogeneity, and thus of an opportunity for natural selection. However, variability provides evidence of heterogeneity only if it exceeds the level of variability to be expected in a cohort of identical individuals all experiencing the same vital rates. Such comparisons require a way to calculate the statistics of lifetime reproduction from demographic data. Here, a new approach is presented, using the theory of Markov chains with rewards, obtaining all the moments of the distribution of lifetime reproduction. The approach applies to age- or stage-classified models, to constant, periodic, or stochastic environments, and to any kind of reproductive schedule. As examples, I analyze data from six empirical studies, of a variety of animal and plant taxa (nematodes, polychaetes, humans, and several species of perennial plants).Supported by National Science Foundation Grant DEB-0816514 and by a Research Award from the Alexander von Humboldt Foundation
Surface and Temporal Biosignatures
Recent discoveries of potentially habitable exoplanets have ignited the
prospect of spectroscopic investigations of exoplanet surfaces and atmospheres
for signs of life. This chapter provides an overview of potential surface and
temporal exoplanet biosignatures, reviewing Earth analogues and proposed
applications based on observations and models. The vegetation red-edge (VRE)
remains the most well-studied surface biosignature. Extensions of the VRE,
spectral "edges" produced in part by photosynthetic or nonphotosynthetic
pigments, may likewise present potential evidence of life. Polarization
signatures have the capacity to discriminate between biotic and abiotic "edge"
features in the face of false positives from band-gap generating material.
Temporal biosignatures -- modulations in measurable quantities such as gas
abundances (e.g., CO2), surface features, or emission of light (e.g.,
fluorescence, bioluminescence) that can be directly linked to the actions of a
biosphere -- are in general less well studied than surface or gaseous
biosignatures. However, remote observations of Earth's biosphere nonetheless
provide proofs of concept for these techniques and are reviewed here. Surface
and temporal biosignatures provide complementary information to gaseous
biosignatures, and while likely more challenging to observe, would contribute
information inaccessible from study of the time-averaged atmospheric
composition alone
The Detectability of Earth's Biosignatures Across Time
Over the past two decades, enormous advances in the detection of exoplanets
have taken place. Currently, we have discovered hundreds of earth-sized
planets, several of them within the habitable zone of their star. In the coming
years, the efforts will concentrate in the characterization of these planets
and their atmospheres to try to detect the presence of biosignatures. However,
even if we discovered a second Earth, it is very unlikely that it would present
a stage of evolution similar to the present-day Earth. Our planet has been far
from static since its formation about 4.5 Ga ago; on the contrary, during this
time, it has undergone multiple changes in it's atmospheric composition, it's
temperature structure, it's continental distribution, and even changes in the
forms of life that inhabit it. All these changes have affected the global
properties of Earth as seen from an astronomical distance. Thus, it is of
interest not only to characterize the observables of the Earth as it is today,
but also at different epochs. Here we review the detectability of the Earth's
globally-averaged properties over time. This includes atmospheric composition
and biosignatures, and surface properties that can be interpreted as sings of
habitability (bioclues). The resulting picture is that truly unambiguous
biosignatures are only detectable for about 1/4 of the Earth's history. The
rest of the time we rely on detectable bioclues that can only establish an
statistical likelihood for the presence of life on a given planet.Comment: To appear in "Handbook of Exoplanets", eds. Deeg, H.J. & Belmonte,
J.A, Springer (2018). arXiv admin note: text overlap with
arXiv:astro-ph/0609398 by other author
Loss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase
Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1
Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link
- …
