10 research outputs found

    Predation life history responses to increased temperature variability

    Get PDF
    The evolution of life history traits is regulated by energy expenditure, which is, in turn, governed by temperature. The forecasted increase in temperature variability is expected to impose greater stress to organisms, in turn influencing the balance of energy expenditure and consequently life history responses. Here we examine how increased temperature variability affects life history responses to predation. Individuals reared under constant temperatures responded to different levels of predation risk as appropriate: namely, by producing greater number of neonates of smaller sizes and reducing the time to first brood. In contrast, we detected no response to predation regime when temperature was more variable. In addition, population growth rate was slowest among individuals reared under variable temperatures. Increased temperature variability also affected the development of inducible defenses. The combined effects of failing to respond to predation risk, slower growth rate and the miss-match development of morphological defenses supports suggestions that increased variability in temperature poses a greater risk for species adaptation than that posed by a mean shift in temperature

    The decline of the sharp-snouted day frog (Taudactylus acutirostris): the first documented case of extinction by infection in a free-ranging wildlife species?

    No full text
    Infectious diseases are increasingly recognized as the cause of mass mortality events, population declines, and the local extirpation of wildlife species. In a number of cases, it has been hypothesized that pathogens have caused species extinctions in wildlife. However, there is only one definitively proven case of extinction by infection, and this was in a remnant captive population of a Polynesian tree snail. In this article, we review the potential involvement of infectious disease in the recent extinction of the sharp-snouted day frog Taudactylus acutirostris. Our review of available evidence suggests that a virulent pathogen of amphibians, Batrachochytrium dendrobatidis, caused a rapid, catastrophic decline of this species, from which it did not recover. We propose that this is the first case of extinction by infection of a free-ranging wildlife species where disease acted as both the proximate and ultimate cause of extinction. This highlights a probable underreporting of infectious disease as a cause of biodiversity loss historically and currently

    Drivers of amphibian declines: effects of ultraviolet radiation and interactions with other environmental factors

    No full text
    corecore