3,713 research outputs found

    Improved thermal force modeling for GPS satellites

    Get PDF
    Geophysical applications of the Global Positioning System (GPS) require the capability to estimate and propagate satellite orbits with high precision. An accurate model of all the forces acting on a satellite is an essential part of achieving high orbit accuracy. Methods of analyzing the perturbation due to thermal radiation and determining its effects on the long-term orbital behavior of GPS satellites are presented. The thermal imbalance force, a nongravitational orbit perturbation previously considered negligible, is the focus of this article. The earth's shadowing of a satellite in orbit causes periodic changes in the satellite's thermal environment. Simulations show that neglecting thermal imbalance in the satellite force model gives orbit error larger than ten meters over several days for eclipsing satellites. This orbit mismodeling can limit accuracy in orbit determination and in estimation of baselines used for geophysical applications

    The effect of ethanol on fat storage in healthy subjects.

    Get PDF
    BACKGROUND: Ethanol can account for up to 10 percent of the energy intake of persons who consume moderate amounts of ethanol. Its effect on energy metabolism, however, is not known. METHODS: We studied the effect of ethanol on 24-hour substrate-oxidation rates in eight normal men during two 48-hour sessions in an indirect-calorimetry chamber. In each session, the first 24 hours served as the control period. On the second day of one session, an additional 25 percent of the total energy requirement was added as ethanol (mean [+/- SD], 96 +/- 4 g per day); during the other session, 25 percent of the total energy requirement was replaced by ethanol, which was isocalorically substituted for lipids and carbohydrates. RESULTS: Both the addition of ethanol and the isocaloric substitution of ethanol for other foods reduced 24-hour lipid oxidation. The respective mean (+/- SE) decreases were 49.4 +/- 6.7 and 44.1 +/- 9.3 g per day (i.e., reductions of 36 +/- 3 percent and 31 +/- 7 percent from the oxidation rate during the control day; P less than 0.001 and P less than 0.0025). This effect occurred only during the daytime period (8:30 a.m. to 11:30 p.m.), when ethanol was consumed and metabolized. Neither the addition of ethanol to the diet nor the isocaloric substitution of ethanol for other foods significantly altered the oxidation of carbohydrate or protein. Both regimens including ethanol produced an increase in 24-hour energy expenditure (7 +/- 1 percent with the addition of ethanol, P less than 0.001; 4 +/- 1 percent with the substitution of ethanol for other energy sources, P less than 0.025). CONCLUSIONS: Ethanol, either added to the diet or substituted for other foods, increases 24-hour energy expenditure and decreases lipid oxidation. Habitual consumption of ethanol in excess of energy needs probably favors lipid storage and weight gain

    Gravitational Waves from Mergin Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Waveform?

    Full text link
    The most promising source of gravitational waves for the planned detectors LIGO and VIRGO are merging compact binaries, i.e., neutron star/neutron star (NS/NS), neutron star/black hole (NS/BH), and black hole/black-hole (BH/BH) binaries. We investigate how accurately the distance to the source and the masses and spins of the two bodies will be measured from the gravitational wave signals by the three detector LIGO/VIRGO network using ``advanced detectors'' (those present a few years after initial operation). The combination M(M1M2)3/5(M1+M2)1/5{\cal M} \equiv (M_1 M_2)^{3/5}(M_1 +M_2)^{-1/5} of the masses of the two bodies is measurable with an accuracy 0.1%1%\approx 0.1\%-1\%. The reduced mass is measurable to 10%15%\sim 10\%-15\% for NS/NS and NS/BH binaries, and 50%\sim 50\% for BH/BH binaries (assuming 10M10M_\odot BH's). Measurements of the masses and spins are strongly correlated; there is a combination of μ\mu and the spin angular momenta that is measured to within 1%\sim 1\%. We also estimate that distance measurement accuracies will be 15%\le 15\% for 8%\sim 8\% of the detected signals, and 30%\le 30\% for 60%\sim 60\% of the signals, for the LIGO/VIRGO 3-detector network.Comment: 103 pages, 20 figures, submitted to Phys Rev D, uses revtex macros, Caltech preprint GRP-36

    Bayesian Bounds on Parameter Estimation Accuracy for Compact Coalescing Binary Gravitational Wave Signals

    Get PDF
    A global network of laser interferometric gravitational wave detectors is projected to be in operation by around the turn of the century. Here, the noisy output of a single instrument is examined. A gravitational wave is assumed to have been detected in the data and we deal with the subsequent problem of parameter estimation. Specifically, we investigate theoretical lower bounds on the minimum mean-square errors associated with measuring the parameters of the inspiral waveform generated by an orbiting system of neutron stars/black holes. Three theoretical lower bounds on parameter estimation accuracy are considered: the Cramer-Rao bound (CRB); the Weiss-Weinstein bound (WWB); and the Ziv-Zakai bound (ZZB). We obtain the WWB and ZZB for the Newtonian-form of the coalescing binary waveform, and compare them with published CRB and numerical Monte-Carlo results. At large SNR, we find that the theoretical bounds are all identical and are attained by the Monte-Carlo results. As SNR gradually drops below 10, the WWB and ZZB are both found to provide increasingly tighter lower bounds than the CRB. However, at these levels of moderate SNR, there is a significant departure between all the bounds and the numerical Monte-Carlo results.Comment: 17 pages (LaTeX), 4 figures. Submitted to Physical Review

    Gravitational wave astronomy

    Get PDF
    The first decade of the new millenium should see the first direct detections of gravitational waves. This will be a milestone for fundamental physics and it will open the new observational science of gravitational wave astronomy. But gravitational waves already play an important role in the modeling of astrophysical systems. I review here the present state of gravitational radiation theory in relativity and astrophysics, and I then look at the development of detector sensitivity over the next decade, both on the ground (such as LIGO) and in space (LISA). I review the sources of gravitational waves that are likely to play an important role in observations by first- and second-generation interferometers, including the astrophysical information that will come from these observations. The review covers some 10 decades of gravitational wave frequency, from the high-frequency normal modes of neutron stars down to the lowest frequencies observable from space. The discussion of sources includes recent developments regarding binary black holes, spinning neutron stars, and the stochastic background.Comment: 29 pages, 2 figures, as submitted for special millenium issue of Classical and Quantum Gravit

    A detailed study of quasinormal frequencies of the Kerr black hole

    Full text link
    We compute the quasinormal frequencies of the Kerr black hole using a continued fraction method. The continued fraction method first proposed by Leaver is still the only known method stable and accurate for the numerical determination of the Kerr quasinormal frequencies. We numerically obtain not only the slowly but also the rapidly damped quasinormal frequencies and analyze the peculiar behavior of these frequencies at the Kerr limit. We also calculate the algebraically special frequency first identified by Chandrasekhar and confirm that it coincide with the n=8n=8 quasinormal frequency only at the Schwarzschild limit.Comment: REVTEX, 15 pages, 7 eps figure

    Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars

    Get PDF
    We develop the formalism required to study the nonlinear interaction of modes in rotating Newtonian stars in the weakly nonlinear regime. The formalism simplifies and extends previous treatments. At linear order, we elucidate and extend slightly a formalism due to Schutz, show how to decompose a general motion of a rotating star into a sum over modes, and obtain uncoupled equations of motion for the mode amplitudes under the influence of an external force. Nonlinear effects are added perturbatively via three-mode couplings. We describe a new, efficient way to compute the coupling coefficients, to zeroth order in the stellar rotation rate, using spin-weighted spherical harmonics. We apply this formalism to derive some properties of the coupling coefficients relevant to the nonlinear interactions of unstable r-modes in neutron stars, postponing numerical integrations of the coupled equations of motion to a later paper. From an astrophysical viewpoint, the most interesting result of this paper is that many couplings of r-modes to other rotational modes (modes with zero frequencies in the non-rotating limit) are small: either they vanish altogether because of various selection rules, or they vanish to lowest order in the angular velocity. In zero-buoyancy stars, the coupling of three r-modes is forbidden entirely and the coupling of two r-modes to one hybrid rotational mode vanishes to zeroth order in rotation frequency. In incompressible stars, the coupling of any three rotational modes vanishes to zeroth order in rotation frequency.Comment: 62 pages, no figures. Corrected error in computation of coupling coefficients, added new selection rule and an appendix on energy and angular momentum of mode

    The contribution of Swiss scientists to the assessment of energy metabolism

    Get PDF
    Although Switzerland is considered a small country, it has its share in discoveries, inventions and developments for the assessment of energy metabolism. This includes seminal contributions to respiratory and metabolic physiology and to devices for measuring energy expenditure by direct and indirect calorimetry in vivo in humans and small animals (as well as in vitro in organs/tissues), for the purpose of evaluating the basic nutritional requirements. A strong momentum came during World War II when it was necessary to evaluate the energy requirements of soldiers protecting the country by assessing their energy expenditure, as well as to determine the nutritional needs of the Swiss civil population in time of war when food rationing was necessary to ensure national neutrality and independence. A further impetus came in the 1970s at the start of the obesity epidemics, toward a better understanding of the metabolic basis of obesity, ranging from the development of whole-body concepts to molecular mechanisms. In a trip down memory lane, this review focuses on some of the earlier leading Swiss scientists who have contributed to a better understanding of the field
    corecore