555 research outputs found

    Exact eigenstates of highly frustrated spin lattices probed in high fields

    Full text link
    Strongly frustrated antiferromagnets such as the magnetic molecule {Mo72Fe30}, the kagome, or the pyrochlore lattice exhibit a variety of fascinating properties like low-lying singlets, magnetization plateaus as well as magnetization jumps. During recent years exact many-body eigenstates could be constructed for several of these spin systems. These states become ground states in high magnetic fields, and they also lead to exotic behavior. A key concept to an understanding of these properties is provided by independent localized magnons. The energy eigenvalue of these n-magnon states scales linearly with the number n of independent magnons and thus with the total magnetic quantum number M=Ns-n. In an applied field this results in a giant magnetization jump which constitutes a new macroscopic quantum effect. It will be demonstrated that this behavior is accompanied by a massive degeneracy, an extensive (T=0)-entropy, and thus a large magnetocaloric effect at the saturation field. The connection to flat band ferromagnetism will be outlined.Comment: 4 pages, submitted to the proceedings of the Yamada Conference LX on Research in High Magnetic Fields, August 16-19, 2006 Sendai, Japa

    Effect of anisotropy on the ground-state magnetic ordering of the spin-one quantum J1XXZJ_{1}^{XXZ}--J2XXZJ_{2}^{XXZ} model on the square lattice

    Full text link
    We study the zero-temperature phase diagram of the J1XXZJ_{1}^{XXZ}--J2XXZJ_{2}^{XXZ} Heisenberg model for spin-1 particles on an infinite square lattice interacting via nearest-neighbour (J11J_1 \equiv 1) and next-nearest-neighbour (J2>0J_2 > 0) bonds. Both bonds have the same XXZXXZ-type anisotropy in spin space. The effects on the quasiclassical N\'{e}el-ordered and collinear stripe-ordered states of varying the anisotropy parameter Δ\Delta is investigated using the coupled cluster method carried out to high orders. By contrast with the spin-1/2 case studied previously, we predict no intermediate disordered phase between the N\'{e}el and collinear stripe phases, for any value of the frustration J2/J1J_2/J_1, for either the zz-aligned (Δ>1\Delta > 1) or xyxy-planar-aligned (0Δ<10 \leq \Delta < 1) states. The quantum phase transition is determined to be first-order for all values of J2/J1J_2/J_1 and Δ\Delta. The position of the phase boundary J2c(Δ)J_{2}^{c}(\Delta) is determined accurately. It is observed to deviate most from its classical position J2c=1/2J_2^c = {1/2} (for all values of Δ>0\Delta > 0) at the Heisenberg isotropic point (Δ=1\Delta = 1), where J2c(1)=0.55±0.01J_{2}^{c}(1) = 0.55 \pm 0.01. By contrast, at the XY isotropic point (Δ=0\Delta = 0), we find J2c(0)=0.50±0.01J_{2}^{c}(0) = 0.50 \pm 0.01. In the Ising limit (Δ\Delta \to \infty) J2c0.5J_2^c \to 0.5 as expected.Comment: 20 pages, 5 figure

    Localized-magnon states in strongly frustrated quantum spin lattices

    Get PDF
    Recent developments concerning localized-magnon eigenstates in strongly frustrated spin lattices and their effect on the low-temperature physics of these systems in high magnetic fields are reviewed. After illustrating the construction and the properties of localized-magnon states we describe the plateau and the jump in the magnetization process caused by these states. Considering appropriate lattice deformations fitting to the localized magnons we discuss a spin-Peierls instability in high magnetic fields related to these states. Last but not least we consider the degeneracy of the localized-magnon eigenstates and the related thermodynamics in high magnetic fields. In particular, we discuss the low-temperature maximum in the isothermal entropy versus field curve and the resulting enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones.Comment: 21 pages, 10 figures, invited paper for a special issue of "Low Temperature Physics " dedicated to the 70-th anniversary of creation of concept "antiferromagnetism" in physics of magnetis

    The genomic basis of rapid adaptation to antibiotic combination therapy in Pseudomonas aeruginosa

    Get PDF
    Combination therapy is a common antibiotic treatment strategy that aims at minimizing the risk of resistance evolution in several infectious diseases. Nonetheless, evidence supporting its efficacy against the nosocomial opportunistic pathogen Pseudomonas aeruginosa remains elusive. Identification of the possible evolutionary paths to resistance in multidrug environments can help to explain treatment outcome. For this purpose, we here performed whole-genome sequencing of 127 previously evolved populations of P. aeruginosa adapted to sublethal doses of distinct antibiotic combinations and corresponding single-drug treatments, and experimentally characterized several of the identified variants. We found that alterations in the regulation of efflux pumps are the most favored mechanism of resistance, regardless of the environment. Unexpectedly, we repeatedly identified intergenic variants in the adapted populations, often with no additional mutations and usually associated with genes involved in efflux pump expression, possibly indicating a regulatory function of the intergenic regions. The experimental analysis of these variants demonstrated that the intergenic changes caused similar increases in resistance against single and multidrug treatments as those seen for efflux regulatory gene mutants. Surprisingly, we could find no substantial fitness costs for a majority of these variants, most likely enhancing their competitiveness toward sensitive cells, even in antibiotic-free environments. We conclude that the regulation of efflux is a central target of antibiotic-mediated selection in P. aeruginosa and that, importantly, changes in intergenic regions may represent a usually neglected alternative process underlying bacterial resistance evolution, which clearly deserves further attention in the future

    Linear independence of localized magnon states

    Full text link
    At the magnetic saturation field, certain frustrated lattices have a class of states known as "localized multi-magnon states" as exact ground states. The number of these states scales exponentially with the number NN of spins and hence they have a finite entropy also in the thermodynamic limit NN\to \infty provided they are sufficiently linearly independent. In this article we present rigorous results concerning the linear dependence or independence of localized magnon states and investigate special examples. For large classes of spin lattices including what we called the orthogonal type and the isolated type as well as the kagom\'{e}, the checkerboard and the star lattice we have proven linear independence of all localized multi-magnon states. On the other hand the pyrochlore lattice provides an example of a spin lattice having localized multi-magnon states with considerable linear dependence.Comment: 23 pages, 6 figure

    Exact diagonalization of the S=1/2 Heisenberg antiferromagnet on finite bcc lattices to estimate properties on the infinite lattice

    Full text link
    Here we generate finite bipartite body-centred cubic lattices up to 32 vertices. We have studied the spin one half Heisenberg antiferromagnet by diagonalizing its Hamiltonian on each of the finite lattices and hence computing its ground state properties. By extrapolation of these data we obtain estimates of the T = 0 properties on the infinite bcc lattice. Our estimate of the T = 0 energy agrees to five parts in ten thousand with third order spin wave and series expansion method estimates, while our estimate of the staggered magnetization agrees with the spin wave estimate to within a quarter of one percent.Comment: 16 pages, LaTeX, 1 ps figure, to appear in J.Phys.

    Tight-binding parameters and exchange integrals of Ba_2Cu_3O_4Cl_2

    Full text link
    Band structure calculations for Ba_2Cu_3O_4Cl_2 within the local density approximation (LDA) are presented. The investigated compound is similar to the antiferromagnetic parent compounds of cuprate superconductors but contains additional Cu_B atoms in the planes. Within the LDA, metallic behavior is found with two bands crossing the Fermi surface (FS). These bands are built mainly from Cu 3d_{x^2-y^2} and O 2p_{x,y} orbitals, and a corresponding tight-binding (TB) model has been parameterized. All orbitals can be subdivided in two sets corresponding to the A- and B-subsystems, respectively, the coupling between which is found to be small. To describe the experimentally observed antiferromagnetic insulating state, we propose an extended Hubbard model with the derived TB parameters and local correlation terms characteristic for cuprates. Using the derived parameter set we calculate the exchange integrals for the Cu_3O_4 plane. The results are in quite reasonable agreement with the experimental values for the isostructural compound Sr_2Cu_3O_4Cl_2.Comment: 5 pages (2 tables included), 4 ps-figure

    Effects of Single-site Anisotropy on Mixed Diamond Chains with Spins 1 and 1/2

    Full text link
    Effects of single-site anisotropy on mixed diamond chains with spins 1 and 1/2 are investigated in the ground states and at finite temperatures. There are phases where the ground state is a spin cluster solid, i.e., an array of uncorrelated spin-1 clusters separated by singlet dimers. The ground state is nonmagnetic for the easy-plane anisotropy, while it is paramagnetic for the easy-axis anisotropy. Also, there are the N\'eel, Haldane, and large-DD phases, where the ground state is a single spin cluster of infinite size and the system is equivalent to the spin-1 Heisenberg chain with alternating anisotropy. The longitudinal and transverse susceptibilities and entropy are calculated at finite temperatures in the spin-cluster-solid phases. Their low-temperature behaviors are sensitive to anisotropy.Comment: 8 pages, 4 figure

    Ferrimagnetism of the Heisenberg Models on the Quasi-One-Dimensional Kagome Strip Lattices

    Full text link
    We study the ground-state properties of the S=1/2 Heisenberg models on the quasi-onedimensional kagome strip lattices by the exact diagonalization and density matrix renormalization group methods. The models with two different strip widths share the same lattice structure in their inner part with the spatially anisotropic two-dimensional kagome lattice. When there is no magnetic frustration, the well-known Lieb-Mattis ferrimagnetic state is realized in both models. When the strength of magnetic frustration is increased, on the other hand, the Lieb-Mattis-type ferrimagnetism is collapsed. We find that there exists a non-Lieb-Mattis ferrimagnetic state between the Lieb-Mattis ferrimagnetic state and the nonmagnetic ground state. The local magnetization clearly shows an incommensurate modulation with long-distance periodicity in the non-Lieb-Mattis ferrimagnetic state. The intermediate non-Lieb-Mattis ferrimagnetic state occurs irrespective of strip width, which suggests that the intermediate phase of the two-dimensional kagome lattice is also the non-Lieb-Mattis-type ferrimagnetism.Comment: 9pages, 11figures, accepted for publication in J. Phys. Soc. Jp
    corecore