13,727 research outputs found
Water cavity degasser for electrolysis cells
Degasser, a cylindrical container made of plastic thick enough to withstand operating pressures of electrolysis module, removes accumulated gases from water cavities without loss of electrolyte
Water electrolysis module
Module utilizes static water-feed electrolysis system and air-cooled fins to remove heat generated by cell inefficiencies. Module generates 0.15 pounds of oxygen and 0.0188 pounds of hydrogen at current density of 100 amps per square foot. Generator operates in aircraft, spacecraft, or submarine cabins
Technology advancement of the static feed water electrolysis process
Some results are presented of a research and development program to continue the development of a method to generate oxygen for crew metabolic consumption during extended manned space flights. The concept being pursued is that of static feed water electrolysis. Specific major results of the work included: (1) completion of a 30-day electrode test using a Life Systems, Inc.-developed high performance catalyst. During startup the cell voltages were as low as 1.38 V at current densities of 108 mA/sq cm (100 ASF) and temperatures of 355 K (180 F). At the end of 30 days of testing the cell voltages were still only 1.42 V at 108 mA/sq cm, (2) determination that the Static Feed Water Electrolysis Module does not release an aerosol of the cell electrolyte into the product gas streams after a break-in period of 24 hours following a new electrolyte charge, and (3) completion of a detailed design analysis of an electrochemical Oxygen Generation Subsystem at a three-man level (4.19 kg/day (9.24 lb/day) of oxygen)
Endurance test and evaluation of alkaline water electrolysis cells
Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level
Impact of low gravity on water electrolysis operation
Advanced space missions will require oxygen and hydrogen utilities for several important operations including the following: (1) propulsion; (2) electrical power generation and storage; (3) environmental control and life support; (4) extravehicular activity; (5) in-space manufacturing and (6) in-space science activities. An experiment suited to a Space Shuttle standard middeck payload has been designed for the Static Feed Water Electrolysis technology which has been viewed as being capable of efficient, reliable oxygen and hydrogen generation with few subsystem components. The program included: end use design requirements, phenomena to be studied, Space Shuttle Orbiter experiment constraints, experiment design and data requirements, and test hardware requirements. The objectives are to obtain scientific and engineering data for future research and development and to focus on demonstrating and monitoring for safety of a standard middeck payload
Static feed water electrolysis module
An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures
Iodine generator for disinfecting reclaimed water
System dispenses iodine into water tank automatically in quantities varying from 0.5 to 20 ppm. It stores 180-day supply of iodine crystals, sufficient to support six people consuming water at rate of 4.5 to 13.6 kg per person per day
On the low energy limit of one loop photon-graviton amplitudes
We present first results of a systematic study of the structure of the low
energy limit of the one-loop photon-graviton amplitudes induced by massive
scalars and spinors. Our main objective is the search of KLT-type relations
where effectively two photons merge into a graviton. We find such a relation at
the graviton-photon-photon level. We also derive the diffeomorphism Ward
identity for the 1PI one graviton - N photon amplitudes.Comment: 14 pages, 1 figure. Final version to be published in Physics Letters
A New Approach to Axial Vector Model Calculations II
We further develop the new approach, proposed in part I (hep-th/9807072), to
computing the heat kernel associated with a Fermion coupled to vector and axial
vector fields. We first use the path integral representation obtained for the
heat kernel trace in a vector-axialvector background to derive a Bern-Kosower
type master formula for the one-loop amplitude with vectors and
axialvectors, valid in any even spacetime dimension. For the massless case we
then generalize this approach to the full off-diagonal heat kernel. In the D=4
case the SO(4) structure of the theory can be broken down to by use of the 't Hooft symbols. Various techniques for explicitly
evaluating the spin part of the path integral are developed and compared. We
also extend the method to external fermions, and to the inclusion of isospin.
On the field theory side, we obtain an extension of the second order formalism
for fermion QED to an abelian vector-axialvector theory.Comment: Sequel to hep-th/9807072, references added, some clarifications and
corrections, 29 pages, RevTex, 8 diagrams using epsfig.st
Iodine generator for reclaimed water purification
The system disclosed is for controlling the iodine level in a water supply in a spacecraft. It includes an iodine accumulator which stores crystalline iodine, an electrochemical valve to control the input of iodine to the drinking water and an iodine dispenser. A pump dispenses fluid through the iodine dispenser and an iodine sensor to a potable water tank storage. The iodine sensor electronically detects the iodine level in the water, and through electronic means, produces a correction current control. The correction current control operates the electro-chemical iodine valve to release iodine from the iodine accumulator into the iodine dispenser
- …