4,323 research outputs found

    Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions

    Get PDF
    We establish the existence and nonlinear stability of travelling pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions close to the continuum limit. For the verification of the spectral properties, we need to study a functional differential equation of mixed type (MFDE) with unbounded shifts. We avoid the use of exponential dichotomies and phase spaces, by building on a technique developed by Bates, Chen and Chmaj for the discrete Nagumo equation. This allows us to transfer several crucial Fredholm properties from the PDE setting to our discrete setting

    Brownian motion of Massive Particle in a Space with Curvature and Torsion and Crystals with Defects

    Full text link
    We develop a theory of Brownian motion of a massive particle, including the effects of inertia (Kramers' problem), in spaces with curvature and torsion. This is done by invoking the recently discovered generalized equivalence principle, according to which the equations of motion of a point particle in such spaces can be obtained from the Newton equation in euclidean space by means of a nonholonomic mapping. By this principle, the known Langevin equation in euclidean space goes over into the correct Langevin equation in the Cartan space. This, in turn, serves to derive the Kubo and Fokker-Planck equations satisfied by the particle distribution as a function of time in such a space. The theory can be applied to classical diffusion processes in crystals with defects.Comment: LaTeX, http://www.physik.fu-berlin.de/kleinert.htm

    Topological Aspect of Knotted Vortex Filaments in Excitable Media

    Full text link
    Scroll waves exist ubiquitously in three-dimensional excitable media. It's rotation center can be regarded as a topological object called vortex filament. In three-dimensional space, the vortex filaments usually form closed loops, and even linked and knotted. In this letter, we give a rigorous topological description of knotted vortex filaments. By using the ϕ\phi-mapping topological current theory, we rewrite the topological current form of the charge density of vortex filaments and use this topological current we reveal that the Hopf invariant of vortex filaments is just the sum of the linking and self-linking numbers of the knotted vortex filaments. We think that the precise expression of the Hopf invariant may imply a new topological constraint on knotted vortex filaments.Comment: 4 pages, no figures, Accepted by Chin. Phys. Let

    Constraints on the sources of branched tetraether membrane lipids in distal marine sediments

    Get PDF
    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids produced by soil bacteria and occur in near coastal marine sediments as a result of soil organic matter input. Their abundance relative to marine-derived crenarchaeol, quantified in the BIT index, generally decreases offshore. However, in distal marine sediments, low relative amounts of brGDGTs can often still be observed. Sedimentary in situ production as well as dust input have been suggested as potential, though as yet not well constrained, sources. In this study brGDGT distributions in dust were examined and compared with those in distal marine sediments. Dust was sampled along the equatorial West African coast and brGDGTs were detected in most of the samples, albeit in low abundance. Their degree of methylation and cyclisation, expressed in the MBT' (methylation index of branched tetraethers) and DC (degree of cyclisation) indices, respectively, were comparable with those for African soils, their presumed source. Comparison of DC index values for brGDGTS in global soils, Congo deep-sea river fan sediments and dust with those of distal marine sediments clearly showed, however, that distal marine sediments had significantly higher values. This distinctive distribution is suggestive of sedimentary in situ production as a source of brGDGTs in marine sediments, rather than dust input. The presence of in situ produced brGDGTs in marine sediments means that caution should be exercised when applying the MBT'–CBT palaeothermometer to sediments with low BIT index values, i.e. < 0.1, based on our dataset

    The constitutive tensor of linear elasticity: its decompositions, Cauchy relations, null Lagrangians, and wave propagation

    Full text link
    In linear anisotropic elasticity, the elastic properties of a medium are described by the fourth rank elasticity tensor C. The decomposition of C into a partially symmetric tensor M and a partially antisymmetric tensors N is often used in the literature. An alternative, less well-known decomposition, into the completely symmetric part S of C plus the reminder A, turns out to be irreducible under the 3-dimensional general linear group. We show that the SA-decomposition is unique, irreducible, and preserves the symmetries of the elasticity tensor. The MN-decomposition fails to have these desirable properties and is such inferior from a physical point of view. Various applications of the SA-decomposition are discussed: the Cauchy relations (vanishing of A), the non-existence of elastic null Lagrangians, the decomposition of the elastic energy and of the acoustic wave propagation. The acoustic or Christoffel tensor is split in a Cauchy and a non-Cauchy part. The Cauchy part governs the longitudinal wave propagation. We provide explicit examples of the effectiveness of the SA-decomposition. A complete class of anisotropic media is proposed that allows pure polarizations in arbitrary directions, similarly as in an isotropic medium.Comment: 1 figur

    Real-time detection of single electron tunneling using a quantum point contact

    Full text link
    We observe individual tunnel events of a single electron between a quantum dot and a reservoir, using a nearby quantum point contact (QPC) as a charge meter. The QPC is capacitively coupled to the dot, and the QPC conductance changes by about 1% if the number of electrons on the dot changes by one. The QPC is voltage biased and the current is monitored with an IV-convertor at room temperature. We can resolve tunnel events separated by only 8 μ\mus, limited by noise from the IV-convertor. Shot noise in the QPC sets a 25 ns lower bound on the accessible timescales.Comment: 3 pages, 3 figures, submitte

    Autoparallels From a New Action Principle

    Full text link
    We present a simpler and more powerful version of the recently-discovered action principle for the motion of a spinless point particle in spacetimes with curvature and torsion. The surprising feature of the new principle is that an action involving only the metric can produce an equation of motion with a torsion force, thus changing geodesics to autoparallels. This additional torsion force arises from a noncommutativity of variations with parameter derivatives of the paths due to the closure failure of parallelograms in the presence of torsionComment: Paper in src. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Read paper directly with Netscape under http://www.physik.fu-berlin.de/~kleinert/kleiner_re243/preprint.htm
    corecore