357 research outputs found

    Species identification of European forest pathogens of the genus Milesina (Pucciniales) using urediniospore morphology and molecular barcoding including M. woodwardiana sp. nov

    Get PDF
    Species of rust fungi of the genus Milesina (Pucciniastraceae, Pucciniales) are distributed mainly in northern temperate regions. They host-alternate between needles of fir (Abies spp.) and fronds of ferns (species of Polypodiales). Milesina species are distinguished based on host taxonomy and urediniospore morphology. In this study, 12 species of Milesina from Europe were revised. Specimens were examined by light and scanning electron microscopy for urediniospore morphology with a focus on visualising germ pores (number, size and position) and echinulation. In addition, barcode loci (ITS, nad6, 28S) were used for species delimitation and for molecular phylogenetic analyses. Barcodes of 72 Milesina specimens were provided, including 11 of the 12 species. Whereas urediniospore morphology features were sufficient to distinguish all 12 Milesina species except for 2 (M. blechni and M. kriegeriana), ITS sequences separated only 4 of 11 species. Sequencing with 28S and nad6 did not improve species resolution. Phylogenetic analysis, however, revealed four phylogenetic groups within Milesina that also correlate with specific urediniospore characters (germ pore number and position and echinulation). These groups are proposed as new sections within Milesina (sections Milesina, Vogesiacae M. Scholler & Bubner, sect. nov., Scolopendriorum M. Scholler & Bubner, sect. nov. and Carpaticae M. Scholler & Bubner, sect. nov.). In addition, Milesina woodwardiana Buchheit & M. Scholler, sp. nov. on Woodwardia radicans, a member of the type section Milesina, is newly described. An identification key for European Milesina species, based on urediniospore features, is provided

    Systematic Evaluation of Candidate Blood Markers for Detecting Ovarian Cancer

    Get PDF
    Epithelial ovarian cancer is a significant cause of mortality both in the United States and worldwide, due largely to the high proportion of cases that present at a late stage, when survival is extremely poor. Early detection of epithelial ovarian cancer, and of the serous subtype in particular, is a promising strategy for saving lives. The low prevalence of ovarian cancer makes the development of an adequately sensitive and specific test based on blood markers very challenging. We evaluated the performance of a set of candidate blood markers and combinations of these markers in detecting serous ovarian cancer.We selected 14 candidate blood markers of serous ovarian cancer for which assays were available to measure their levels in serum or plasma, based on our analysis of global gene expression data and on literature searches. We evaluated the performance of these candidate markers individually and in combination by measuring them in overlapping sets of serum (or plasma) samples from women with clinically detectable ovarian cancer and women without ovarian cancer. Based on sensitivity at high specificity, we determined that 4 of the 14 candidate markers--MUC16, WFDC2, MSLN and MMP7--warrant further evaluation in precious serum specimens collected months to years prior to clinical diagnosis to assess their utility in early detection. We also reported differences in the performance of these candidate blood markers across histological types of epithelial ovarian cancer.By systematically analyzing the performance of candidate blood markers of ovarian cancer in distinguishing women with clinically apparent ovarian cancer from women without ovarian cancer, we identified a set of serum markers with adequate performance to warrant testing for their ability to identify ovarian cancer months to years prior to clinical diagnosis. We argued for the importance of sensitivity at high specificity and of magnitude of difference in marker levels between cases and controls as performance metrics and demonstrated the importance of stratifying analyses by histological type of ovarian cancer. Also, we discussed the limitations of studies (like this one) that use samples obtained from symptomatic women to assess potential utility in detection of disease months to years prior to clinical detection

    Characterization of Gravitational Microlensing Planetary Host Stars

    Get PDF
    The gravitational microlensing light curves that reveal the presence of extrasolar planets generally yield the planet-star mass ratio and separation in units of the Einstein ring radius. The microlensing method does not require the detection of light from the planetary host star. This allows the detection of planets orbiting very faint stars, but it also makes it difficult to convert the planet-star mass ratio to a value for the planet mass. We show that in many cases, the lens stars are readily detectable with high resolution space-based follow-up observations in a single passband. When the lens star is detected, the lens-source relative proper motion can also be measured, and this allows the masses of the planet and its host star to be determined and the star-planet separation can be converted to physical units. Observations in multiple passbands provide redundant information, which can be used to confirm this interpretation. For the recently detected super-Earth planet, OGLE-2005-BLG-169Lb, we show that the lens star will definitely be detectable with observations by the Hubble Space Telescope (HST) unless it is a stellar remnant. Finally, we show that most planets detected by a space-based microlensing survey are likely to orbit host stars that will be detected and characterized by the same survey.Comment: accepted for publication in ApJ, May 10, 200

    Characterization of human mesothelin transcripts in ovarian and pancreatic cancer

    Get PDF
    BACKGROUND: Mesothelin is an attractive target for cancer immunotherapy due to its restricted expression in normal tissues and high level expression in several tumor types including ovarian and pancreatic adenocarcinomas. Three mesothelin transcript variants have been reported, but their relative expression in normal tissues and tumors has been poorly characterized. The goal of the present study was to clarify which mesothelin transcript variants are commonly expressed in human tumors. METHODS: Human genomic and EST nucleotide sequences in the public databases were used to evaluate sequences reported for the three mesothelin transcript variants in silico. Subsequently, RNA samples from normal ovary, ovarian and pancreatic carcinoma cell lines, and primary ovarian tumors were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and nucleotide sequencing to directly identify expressed transcripts. RESULTS: In silico comparisons of genomic DNA sequences with available EST sequences supported expression of mesothelin transcript variants 1 and 3, but there were no sequence matches for transcript variant 2. Newly-derived nucleotide sequences of RT-PCR products from tissues and cell lines corresponded to mesothelin transcript variant 1. Mesothelin transcript variant 2 was not detected. Transcript variant 3 was observed as a small percentage of total mesothelin amplification products from all studied cell lines and tissues. Fractionation of nuclear and cytoplasmic RNA indicated that variant 3 was present primarily in the nuclear fraction. Thus, mesothelin transcript variant 3 may represent incompletely processed hnRNA. CONCLUSION: Mesothelin transcript variant 1 represents the predominant mature mRNA species expressed by both normal and tumor cells. This conclusion should be important for future development of cancer immunotherapies, diagnostic tests, and gene microarray studies targeting mesothelin

    B fields in OB stars (BOB): on the detection of weak magnetic fields in the two early B-type stars beta CMa and epsilon CMa

    Get PDF
    Within the context of the "B fields in OB stars (BOB)" collaboration, we used the HARPSpol spectropolarimeter to observe the early B-type stars beta CMa (HD44743; B1 II/III) and epsilon CMa (HD52089; B1.5 II). For both stars, we consistently detected the signature of a weak (<30 G in absolute value) longitudinal magnetic field. We determined the physical parameters of both stars and characterise their X-ray spectrum. For beta CMa, our mode identification analysis led to determining a rotation period of 13.6+/-1.2 days and of an inclination angle of the rotation axis of 57.6+/-1.7 degrees, with respect to the line of sight. On the basis of these measurements and assuming a dipolar field geometry, we derived a best fitting obliquity of ~22 degrees and a dipolar magnetic field strength (Bd) of ~100 G (60<Bd<230 G within 1 sigma), below what is typically found for other magnetic massive stars. For epsilon CMa we could only determine a lower limit on the dipolar magnetic field strength of 13 G. For this star, we determine that the rotation period ranges between 1.3 and 24 days. Both stars are expected to have a dynamical magnetosphere. We also conclude that both stars are most likely core hydrogen burning and that they have spent more than 2/3 of their main sequence lifetime. A histogram of the distribution of the dipolar magnetic field strength for the magnetic massive stars known to date does not show the magnetic field "desert" observed instead for intermediate-mass stars. The biases involved in the detection of (weak) magnetic fields in massive stars with the currently available instrumentation and techniques imply that weak fields might be more common than currently observed. Our results show that, if present, even relatively weak magnetic fields are detectable in massive stars and that more observational effort is probably still needed to properly access the magnetic field incidence.Comment: Accepted for publication on A&A. The astroph abstract has been shortened compared to that of the pdf fil
    • …
    corecore