1,428 research outputs found

    Boundary-layer effects on electromagnetic and acoustic extraordinary transmission through narrow slits

    Get PDF
    We study the problem of resonant extraordinary transmission of electromagnetic and acoustic waves through subwavelength slits in an infinite plate, whose thickness is close to a half-multiple of the wavelength. We build on the matched-asymptotics analysis of Holley & Schnitzer (2019 Wave Motion91, 102381 (doi:10.1016/j.wavemoti.2019.102381)), who considered a single-slit system assuming an idealized formulation where dissipation is neglected and the electromagnetic and acoustic problems are analogous. We here extend that theory to include thin dissipative boundary layers associated with finite conductivity of the plate in the electromagnetic problem and viscous and thermal effects in the acoustic problem, considering both single-slit and slit-array configurations. By considering a distinguished boundary-layer scaling where dissipative and diffractive effects are comparable, we develop accurate analytical approximations that are generally valid near resonance; the electromagnetic–acoustic analogy is preserved up to a single parameter that is provided explicitly for both scenarios. The theory is shown to be in excellent agreement with GHz-microwave and kHz-acoustic experiments in the literature

    Multi-scale Renormalisation Group Improvement of the Effective Potential

    Full text link
    Using the renormalisation group and a conjecture concerning the perturbation series for the effective potential, the leading logarithms in the effective potential are exactly summed for O(N)O(N) scalar and Yukawa theories.Comment: 19 pages, DIAS STP 94-09. Expanded to check large N limit, typo's corrected, to appear in Phys Rev

    Properties of the Strange Axial Mesons in the Relativized Quark Model

    Get PDF
    We studied properties of the strange axial mesons in the relativized quark model. We calculated the K1K_1 decay constant in the quark model and showed how it can be used to extract the K1(3P1)−K1(1P1)K_1 (^3P_1) - K_1 (^1P_1) mixing angle (θK\theta_K) from the weak decay τ→K1ντ\tau \to K_1 \nu_\tau. The ratio BR(τ→ντK1(1270))/BR(τ→ντK1(1400))BR(\tau \to \nu_\tau K_1 (1270))/BR(\tau\to \nu_\tau K_1(1400)) is the most sensitive measurement and also the most reliable since the largest of the theoretical uncertainties factor out. However the current bounds extracted from the TPC/Two-Gamma collaboration measurements are rather weak: we typically obtain −30o≲θK≲50o-30^o \lesssim \theta_K \lesssim 50^o at 68\% C.L. We also calculated the strong OZI-allowed decays in the pseudoscalar emission model and the flux-tube breaking model and extracted a 3P1−1P1^3P_1 - ^1P_1 mixing angle of θK≃45o\theta_K \simeq 45^o. Our analysis also indicates that the heavy quark limit does not give a good description of the strange mesons.Comment: Revised version to be published in Phys. Rev. D. Minor changes. Latex file uses revtex version 3 and epsfig, 4 postcript figures are attached. The full postcript version with embedded figures is available at ftp://ftp.physics.carleton.ca/pub/theory/godfrey/ocipc9512.ps.

    QCD strings with spinning quarks

    Full text link
    We construct a consistent action for a massive spinning quark on the end of a QCD string that leads to pure Thomas precession of the quark's spin. The string action is modified by the addition of Grassmann degrees of freedom to the string such that the equations of motion for the quark spin follow from boundary conditions, just as do those for the quark's position.Comment: REVTeX4, 10 pages, no figure
    • …
    corecore