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We study the problem of resonant extraordinary

transmission of electromagnetic and acoustic waves

through subwavelength slits in an infinite plate,

whose thickness is close to a half-multiple of the

wavelength. We build on the matched-asymptotics

analysis of Holley & Schnitzer (Wave Motion, 91

102381, 2019), who considered a single-slit system

assuming an idealised formulation where dissipation

is neglected and the electromagnetic and acoustic

problems are analogous. We here extend that

theory to include thin dissipative boundary layers

associated with finite conductivity of the plate

in the electromagnetic problem and viscous and

thermal effects in the acoustic problem, considering

both single-slit and slit-array configurations. By

considering a distinguished boundary-layer scaling

where dissipative and diffractive effects are comparable,

we develop accurate analytical approximations that

are generally valid near resonance; the electromagnetic-

acoustic analogy is preserved up to a single parameter

that is provided explicitly for both scenarios. The

theory is shown to be in excellent agreement with

GHz-microwave and kHz-acoustic experiments in the

literature.

1. Introduction

The phenomenon of extraordinary transmission of

wave energy through small openings is key to the

operation of numerous structured devices used for

wave manipulation, ranging from traditional filters and

gratings to modern metasurfaces and metamaterials [1,

2]. A basic example is resonant transmission through

narrow slits in an infinite plate (single slits or slit arrays),

where the formation of standing waves in the slits gives
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rise to so-called Fabry–Pérot transmission resonances [2–20].

In the simplest version of this problem, there exists a precise electromagnetic-acoustic analogy

in which the wave is represented by a two-dimensional scalar field governed by the Helmholtz

equation along with a homogeneous Neumann condition on the plate boundary. There are

no dissipative mechanisms in this idealised analogue model. In the electromagnetic scenario,

it is valid for transverse-magnetic (TM) polarised waves, assuming that the plate is perfectly

conducting. In the acoustic scenario, it is required that the plate is rigid and that viscous and

thermal effects are negligible. This analogy naturally extends with appropriate assumptions to

other physical scenarios such as water waves [21].

For a single narrow slit, the idealised analogue model predicts enhanced transmission in

narrow intervals about a discrete set of resonance frequencies, which owing to diffractive effects

are slightly lower than the standing-wave frequencies of the slit calculated with end effects

ignored [3]. For an array of narrow slits, similar resonances enable perfect transmission for a

discrete set of frequencies [3].

The assumptions underlying this idealised model are often unrealistic. Thus, electromagnetic

experiments with metallic plates in the GHz-microwave regime, together with numerical

simulations, have shown that owing to the finite conductivity of the plate the resonant

transmission peaks are diminished and shifted to lower frequencies (on top of the diffractive

shifts predicted by the idealised model) [6]. Qualitatively similar effects occur in the acoustic

problem, owing to thermal and viscous effects, as demonstrated by experiments and simulations

for kHz frequencies in air [14]. In both physical scenarios, these discrepancies with the analogue

model are attributed to the effects of dissipative boundary layers that are thin compared to the

subwavelength width of the slits. In the electromagnetic scenario, the boundary layer, aka skin,

lies within the plate. In contrast, the thermoviscous boundary layer in the acoustic scenario lies in

the exterior fluid domain.

Our goal is to analytically investigate the above electromagnetic and acoustic boundary-

layer effects, for both single-slit and slit-array configurations. In accordance with the relevant

experiments, we shall take the incident field to be a plane wave propagating perpendicular to

the plate. Furthermore, in the acoustic scenario we shall assume that the fluid is a viscous and

thermally conducting ideal gas and that the plate is rigid and isothermal; in the electromagnetic

scenario we shall assume the TM polarisation and that the plate is metallic. Our aim is to derive

an asymptotic description based on the subwavelength smallness of the slit width in comparison

with the wavelength-scale plate thickness, starting from first principles: the macroscopic Maxwell

equations in the electromagnetic scenario and the linearised Navier–Stokes and energy equations

in the acoustic scenario. In appearance, these two formulations are very different. Our analysis

will show, however, that the physical analogy between the idealised electromagnetic and acoustic

problems can be essentially carried over to the corresponding dissipative problems.

We shall extensively build on the analysis of Holley and Schnitzer [20], who used the method

of matched asymptotic expansions [22, 23] to analyse the idealised problem in the case of a single

slit. There are two important elements in that analysis which will be crucial here. The first is

that the analysis focuses on “near-resonance” regimes in frequency and parameter space. In the

idealised problem, these regimes are defined by the smallness of the slit width in comparison to

the plate thickness, together with the related proximity of the frequency to one of the standing-

wave frequencies of the slit. In the present context, we also require that the boundary layers

are thin compared to the slit width, so that the resonances are not strongly damped owing to

dissipative effects. Specifically, without loss of generality we shall consider a distinguished limit

where boundary-layer and diffractive effects are comparable in order of magnitude. The second

important element is the systematic treatment of diffractive end effects via matched asymptotics

and conformal mapping techniques.

As further discussed in [20], the analysis and results therein corrected ad hoc approximations

in the physics literature [3, 13, 24] and simplified and made explicit previous mathematical

treatments of the idealised single-slit problem [10–12, 17] (see also discussion below (3.31)).
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Figure 1. Transmission of a normally incident plane wave through a single slit in an infinite plate (upper half: acoustic

problem, lower half: electromagnetic problem). (a) Dimensional schematic. (b) Dimensionless schematic showing the

regions considered in the asymptotic analysis of §3; the boundary-layer scaling δ =O(h2) represents a distinguished

limit where boundary-layer and diffraction effects are comparable.

Furthermore, the asymptotic formulae were shown to be in excellent agreement with numerical

solutions of the idealised problem and with a subset of the microwave experiments in [6]

for which dissipative effects are minimal. Accordingly, the aim of this work is to extend

this agreement between asymptotics and experiments to a wider range of scenarios in

electromagnetism [6] and acoustics [14], including single-slit and slit-array configurations as well

as dissipative effects.

The rest of the paper is structured as follows. In §2 we formulate the electromagnetic and

acoustic problems for transmission of a normally incident plane wave through a single slit. In

§3 we asymptotically analyse these problems, jointly for the most part. In §4 we extend the

theory to a periodic array of slits. For comparisons with experiments, see §3(g) and §4(d). We

give concluding remarks in §5.

2. Formulation for a single slit

(a) Electromagnetic problem

The electromagnetic problem is schematically depicted in Fig. 1(a). We consider an

electromagnetic plane wave of angular frequency ω normally incident on an infinite metallic

plate of thickness l and relative permittivity ǫ. The plate is bisected by a single perpendicular

slit of width 2hl. We consider a two-dimensional problem where the electric and magnetic fields

are respectively parallel and perpendicular to the plane in Fig. 1, both fields being invariant in the

perpendicular direction (TM polarisation). The background medium is assumed to be vacuum.

In what follows we adopt a dimensionless convention where lengths are normalised by l. In

particular, we will employ the dimensionless Cartesian coordinates (x, y) shown in Fig. 1(b),

along with the radial coordinates r± =
√

x2 + (y ∓ 1/2)2 measured from the centres of the slit

apertures. We suppress the harmonic time variation exp(−iωt) in the usual way, such that

fields are represented by complex-valued counterclockwise phasors. With this convention, ǫ is

restricted to the second quadrant of the complex plane. We shall formulate the problem for

the two-dimensional scalar fields H and H̄, the induction fields (normalised by the amplitude

of the incident wave) in the background and plate domains, respectively. We also define the

dimensionless frequency

Ω =
ωl

c
, (2.1)

in which c is the speed of light in vacuum. Note that Ω is of order unity in the case of interest

where the wavelength is commensurate with the plate thickness.
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The fields H and H̄ satisfy the reduced-wave equations

∇2H +Ω2H =0, ∇2H̄ + ǫΩ2H̄ =0, (2.2a, b)

respectively in the background and plate domains. On the plate boundary we have the

transmission conditions

H = H̄,
∂H

∂n
=

1

ǫ

∂H̄

∂n
, (2.3a, b)

where ∂/∂n represents the normal derivative. The problem is closed by specifying the incident

field

H(i) = eiΩy (2.4)

along with the condition that the scattered field H −H(i) is outward radiating.

An important dimensional length scale is the skin depth ls =
√

2ρ/ωµ, where ρ is the metal

resistivity and µ the metal permeability, which is equal to the vacuum permeability. For a good

conductor, ls is the characteristic scale on which electromagnetic fields attenuate inside the metal.

For our purposes, it is useful to define the dimensionless skin depth

δ =
ls
l
=

1

Ω

√

2

ǫ′′
, (2.5)

in which ǫ′′ denotes the imaginary component of ǫ. The relative smallness of the skin depth

is determined by the largeness of ǫ′′. In particular, for the GHz-microwave frequencies in the

experiments in [6], ǫ≈ iǫ′′ with ǫ′′ ≃ 106 − 107.

(b) Acoustic problem

We now formulate a sister acoustic problem, also depicted in Fig. 1(a). In this problem, the plate is

rigid and isothermal (perfectly heat conducting), while the exterior domain is a viscous and heat-

conducting ideal gas. In contrast to the electromagnetic problem, the acoustic problem is confined

to the exterior fluid domain. The governing equations are the continuity, momentum, energy

and state equations linearised about an equilibrium state of density ρ0, viscosity η, specific heat

capacity at constant pressure cp and heat conductivity κ [25]. We adopt the same dimensionless

and phasor-field conventions as in the electromagnetic problem, with c in (2.1) now denoting the

equilibrium speed of sound. Below, we formulate the acoustic problem for the dimensionless

pressure p, temperature perturbation T and velocity field u (respectively normalised by p∞,

p∞/(ρ0cp) and p∞/(ωρ0l)). The reference pressure p∞ is associated with the incident plane wave,

as discussed below.

The governing equations are the continuity equation

− iΩ2p− i(γ − 1)Ω2(p− T ) +∇ · u= 0, (2.6)

the momentum equation

− iu=−∇p+ δ2
[

∇2
u+

1

3
∇ (∇ · u)

]

(2.7)

and the energy equation

i (p− T ) = Pr−1δ2∇2T. (2.8)

Analogously to (2.5), we define the dimensionless viscous length scale

δ =
lv
l
, (2.9)

along with the Prandtl number Pr = (lv/lt)
2, in which lv =

√

η/ρ0ω and lt =
√

κ/ρ0ωcp are

dimensional viscous and thermal length scales, respectively. The adiabatic index is denoted γ.

For air γ ≈ 1.4 and Pr ≈ 0.71.
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The above equations are supplemented by boundary and far-field conditions. On the plate

boundary, the linearised flow field satisfies the no-slip condition

u= 0, (2.10)

while the temperature perturbation satisfies the isothermal boundary condition

T = 0. (2.11)

As in the electromagnetic problem, the acoustic problem is closed by specifying a normally

incident pressure plane wave and requiring the corresponding scattered fields to be outward

propagating. Strictly speaking, plane-wave solutions of (2.6)–(2.8) attenuate exponentially; thus,

we define the reference value p∞ as the magnitude of the plane wave at y= 0. For small δ,

however, sound attenuation in the bulk of the fluid occurs on a length scale large compared to

the plate thickness [25]. For this reason, it will suffice that at a fixed position the incident pressure

field p(i) satisfies

p(i) → eiΩy as δ→ 0. (2.12)

This limit is identical to the exact incident field (2.4) in the electromagnetic problem.

(c) Near-resonance limit

Following the analysis of the idealised problem in [20], we shall consider the near-resonance

regime where h≪ 1 and Ω − Ω̄ =O(h), with

Ω̄ =mπ, m=1, 2, 3, . . . (2.13)

the unperturbed standing-wave, or Fabry–Pérot, frequencies of the slit (i.e., ignoring end-

correction and dissipative effects). For this purpose, it is convenient to write

Ω − Ω̄

Ω̄
≡ 2hΩ′ (2.14)

with Ω′ fixed as h→ 0. For this regime, it was shown that the wave field within the slit is

approximated by the corresponding one-dimensional standing wave, except close to the slit ends,

of magnitude O(1/h) — singularly large compared to the O(1) magnitude of the slit field off-

resonance and the O(1) magnitude of the incident wave; concomitantly, the field diffracted from

the slit ends was shown to be enhanced from O(h) to O(1).

It is clear that dissipative effects can only widen the resonances whilst diminishing the above

magnitude scalings. In what follows, we shall specifically consider the distinguished boundary-

layer scaling δ=O(h2) where, on the one hand, dissipative effects are important at leading order,

while, on the other hand, the near-resonance scalings are the same as in the idealised problem.

This distinguished scaling, which we shall see holds for both the electromagnetic and acoustic

problems, represents a balance between diffractive energy leakage from the slit and dissipation.

In light of the above, we rescale the dimensionless boundary-layer thickness as

δ= h2δ′, (2.15)

with δ′ fixed as h→ 0. In the electromagnetic problem, δ is implicit in the problem formulation.

Thus, in that problem it will be more convenient to hold fixed the complex-valued parameter

α= h2ǫ1/2, (2.16)

where the principal branch of the square-root function is assumed.

3. Asymptotic analysis for a single slit
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(a) Matched asymptotic expansions

In this section we study the single-slit problems formulated in §2, considering the near-

resonance limit process described in §2(c). Following [20], we shall employ the method of

matched asymptotic expansions whereby the physical domain is conceptually decomposed into

overlapping regions interconnected by asymptotic matching rules [22, 23]. The regions employed

in our analysis are schematically shown in Fig. 1(b). These include the “bulk” left and right

exterior regions, a slit region and two transition regions close to the slit ends, as well as boundary-

layer regions respectively inside and outside the plate in the electromagnetic and acoustic

problems. The term bulk is used to indicate characteristic dimensions that are large compared

to the boundary-layer thickness. Matching in-between the bulk regions will be carried out based

on results from [20]. In the acoustic problem, further matching will be needed in order to connect

the overlapping boundary-layer and bulk regions. In contrast, in the electromagnetic problem the

boundary layers are more simply coupled to the bulk regions, through boundary conditions (2.3).

(b) Boundary-layer effects: scalings

It is constructive to preface the asymptotic analysis by deriving scaling rules describing the

effects of the thin boundary layers on wave propagation in the bulk exterior, slit and transition

regions. These scaling rules will help to streamline the analysis, motivate a joint treatment of

the electromagnetic and acoustic problems and justify the distinguished boundary-layer scaling

(2.15).

The scaling argument is particularly simple in the electromagnetic scenario, in which the

electromagnetic boundary layer lies inside the metal plate. Let the scaling of H in a given bulk

region be H ; then the field H̄ in the electromagnetic boundary layer is comparable in magnitude,

attenuating into the metal domain on the boundary-layer scale δ. With this construction, the

transmission boundary condition (2.3b) together with (2.5) implies a bulk perturbation of order

H
′ = δ∆⊥H , (3.1)

where ∆⊥ denotes the characteristic length scale of the bulk field normal to the boundary (unity

for the exterior regions and h for the slit and transition regions). We assume that, as in the near-

resonance lossless analysis [20], H = h−1 in the slit region and unity in the exterior and transition

regions. Then, with the distinguished scaling δ =O(h2), we find H
′ = h2, h2 and h3 for the

exterior, slit and transition regions, respectively.

Consider next the acoustic problem, in which there are viscous and thermal boundary layers

on the external side of the plate boundary. The tangential component of the velocity field varies

across the boundary layer, from the bulk value, of order U , say, to zero at the boundary; the

pressure, of order P , say, is approximately uniform across the boundary layer. Furthermore,

the temperature varies from its bulk value, on the order of P , to zero on the boundary.

With this construction, the continuity equation (2.6) implies bulk perturbations of the normal

velocity component of order U
′
V = (δ/∆‖)U and U

′
T = δP owing to viscous and thermal effects,

respectively, wherein ∆‖ is the characteristic scale of the bulk field parallel to the boundary (unity

for the exterior and slit regions and h for the transition regions). Since in the bulk velocity scales

like the pressure gradient we have U =P/∆‖ and UV/T =P
′
V/T /∆⊥, where PV and PT are

the orders of the bulk pressure perturbations owing to viscous and thermal effects, respectively.

We therefore find the estimates

P
′
V =

δ∆⊥

∆‖
2

P and P
′
T = δ∆⊥P. (3.2)

With P = h−1 in the slit region and unity in the exterior and transition regions, we find P
′
V =

h2, h2 and h in the exterior, slit and transition regions, respectively; for P
′
T we find the same

orders as for the induction field in the electromagnetic problem.
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The relative smallness of these bulk perturbations may appear to contradict our claim that

the assumed scaling δ =O(h2) represents a distinguished limit where boundary-layer effects first

become important. While these perturbations are indeed negligible in the exterior and transition

bulk regions, we know from the analysis of the idealised problem in [20] that O(h2) perturbations

in the slit region affect the leading O(h−1) field in the slit. It is this observation, together with the

above scaling rules, by which we have identified the distinguished scaling (2.15). We note that an

alternative scaling analysis could be carried out based on energy-dissipation arguments [26].

(c) Exterior regions

Armed with these scaling results, we begin our analysis with the exterior regions, which are

defined by the limit process discussed in §2(c) together with the additional specification that the

coordinates (x, y) are held fixed. We shall distinguish between a left exterior region corresponding

to the half-space y <−1/2 and a right exterior region corresponding to the half-space y > 1/2. For

the sake of considering the electromagnetic and acoustic problems simultaneously, we pose the

asymptotic expansions

H,p∼ϕ±(x, y) as h→ 0, (3.3)

the plus-minus signs indicating the right and left exterior regions, respectively.

The leading-order fields ϕ± satisfy the Helmholtz equations

∇2ϕ± + Ω̄2ϕ± = 0 (3.4)

in the respective half-spaces. In the electromagnetic problem, (3.4) readily follows from a leading-

order balance of (2.2a). In the acoustic problem, it follows from combining the leading-order

balances of (2.6)–(2.8). Note that the dimensionless frequency is approximated at leading order

by Ω̄ in accordance with the frequency rescaling (2.14).

The Helmholtz equations (3.4) are supplemented by effective boundary conditions. At y=

±1/2, the scaling results of §3(b) imply that in the exterior regions boundary-layer effects are

negligible at O(1). This implies the Neumann boundary conditions

∂ϕ−

∂y

∣

∣

∣

∣

y=−1/2

=0,
∂ϕ+

∂y

∣

∣

∣

∣

y=1/2

= 0, (3.5a, b)

for x 6= 0. The behaviour of ϕ± as (x, y)→ (0,±1/2) will be determined by asymptotic matching.

As |y|→∞, the leading-order scattered fields ϕ± − ϕ(i) satisfy an outward-radiation condition

with respect to the incident field [cf. (2.4) and (2.12)]

ϕ(i) = eiΩ̄y. (3.6)

Consider the left exterior region. The solution for ϕ− is obtained by superposing the incident

plane wave (3.6), a reflected plane wave, whose phase is adjusted to satisfy condition (3.5a),

and the fundamental singular solutions of the Helmholtz equation (3.4) with origin at (x, y) =

(0,−1/2). This singular solution, which represents an outward-radiating cylindrical wave, is

proportional to H0(Ω̄r−), wherein H0 is the zeroth-order Hankel function [27]; it is clearly

compatible with (3.5a). An asymptotic property of this function that will be important later is

H0(s)∼
2i

π
ln s+

2i

π
(γE − ln 2) + 1 + o(1) as s→ 0, (3.7)

where γE = 0.5772 . . . is the Euler–Mascheroni constant. Higher-order singular solutions, formed

by derivates of this fundamental solution, can be eliminated via matching [20]. We accordingly

find

ϕ− = eiΩ̄y +Re−iΩ̄y +Q−H0(Ω̄r−), (3.8)

where R= e−iΩ̄ is a reflection coefficient and Q− is a diffraction coefficient to be determined.
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Similar considerations applied to the right exterior region give

ϕ+ =Q+H0(Ω̄r+), (3.9)

where Q+ is a second diffraction coefficient to be determined.

(d) Slit region

Consider now the slit region, where the stretched transverse coordinate X = x/h is held fixed

instead of x. With that rescaling, we find the Helmholtz equation

1

h2
∂2Φ

∂X2
+

∂2Φ

∂y2
+ Ω̄2

(

1 + 4hΩ′ + 4h2Ω′2
)

Φ≈ 0 (3.10)

for |y|< 1/2 and |X|< 1, where Φ(X, y) stands for H in the electromagnetic problem and p in the

acoustic problem. In the former, (3.10) follows from (2.2a) and (2.14) without approximation. In

the latter, the governing equations (2.6)–(2.8) together imply (3.10) with O(δ2Φ) error terms which

are too small to affect the following analysis.

The boundary conditions at y=±1/2 are to be determined by asymptotic matching with the

transition and exterior regions. As for the boundary conditions at X =±1, the scalings derived in

§3(b) imply that the boundary layers at the top and bottom of the slit affect the bulk slit field only

at high orders. Specifically,

∂Φ

∂X
=O (hδΦ) at X =±1. (3.11)

The precise leading-order form of the right-hand side will be derived in §3(h) for the

electromagnetic problem, by analysing the skin layers, and in §3(i) for the acoustic problem, by

analysing the thermoviscous boundary layers. In the present subsection, we will simply quote

these results (at a later point, as they depend on properties of Φ yet to be derived).

As already mentioned, we anticipate an O(1/h) enhancement of the wave field in the slit. We

accordingly pose the expansion

Φ= h−1Φ−1(X, y) + Φ0(X, y) + hΦ1(X, y) + h2Φ2(X, y) + · · · as h→ 0. (3.12)

The O(1/h3) and O(1/h2) balances of (3.10) give the trivial relations

∂2Φ−1

∂X2
= 0,

∂2Φ0

∂X2
= 0. (3.13)

Since (3.11) implies the homogeneous Neumann conditions

∂Φ−1

∂X
= 0,

∂Φ0

∂X
= 0 at X =±1, (3.14a, b)

we find that Φ−1 and Φ0 are independent of X , namely Φ−1 =Φ−1(y) and Φ0 =Φ0(y). Next, the

O(1/h) balance of (3.10) gives

∂2Φ1

∂X2 +
d2Φ−1

dy2
+ Ω̄2Φ−1 =0. (3.15)

Integrating with respect to X and using the homogenous Neumann condition

∂Φ1

∂X
= 0 at X =±1, (3.16)

we find the one-dimensional Helmholtz equation

d2Φ−1

dy2
+ Ω̄2Φ−1 = 0. (3.17)

It follows from (3.15)–(3.17), in turn, that Φ1 =Φ1(y).
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The Helmholtz equation (3.17) is supplemented by the matching conditions

Φ−1 =0 at y=±1/2, (3.18)

which evidently follow from the relative smallness of the wave field in the exterior regions

together with the regularity of solutions to (3.17) [20]. The homogeneous problem consisting

of (3.17) and (3.18) has nontrivial solutions only for Ω̄ =mπ, in which the integer m= 1, 2, . . .

corresponds to the order of the standing wave excited in the slit. We write these standing-wave

solutions in the form

Φ−1 =A×
{

cos(Ω̄y)

sin(Ω̄y)

}

, (3.19)

where A is a complex-valued prefactor; we also introduce a notation to be used throughout the

paper, where the upper element of the array corresponds to odd m (even standing wave) and the

lower to even m (odd standing wave).

At this stage we need the right-hand side of (3.11). With the knoweledge that Φ−1, Φ0 and Φ1

are all independent of X , the boundary-layer analyses in §3(h) and §3(i) furnish the impedance-

like conditions
∂Φ2

∂X
=±CΦ−1 at X =±1, (3.20)

where C is a complex-valued parameter which is given in the electromagnetic scenario by

C =
iΩ̄

h2ǫ1/2
(3.21)

and in the acoustic scenario by

C =
δΩ̄2

h2
1 + i√

2

(

1 +
γ − 1√

Pr

)

, (3.22)

wherein δ is defined in (2.9). In (3.21) and (3.22), ǫ and δ, respectively, can be treated as constant

over the near-resonance frequency interval.

Consider next the O(1) balance of (3.10),

∂2Φ2

∂X2 +
d2Φ0

dy2
+ Ω̄2Φ0 + 4Ω′Ω̄2Φ−1 = 0. (3.23)

Integrating across the slit and using the boundary condition (3.20) yields

d2Φ0

dy2
+ Ω̄2Φ0 =−

(

4Ω′Ω̄2 + C
)

Φ−1. (3.24)

We shall not need the detailed solution of (3.24). Rather, we derive relations between the leading-

order amplitude A and the end values of Φ0, which will be required for asymptotic matching. To

this end, we subtract the product of Φ0 and the complex conjugate of (3.17) from the product of

(3.24) and the complex conjugate of Φ−1; integrating this difference between the two ends of the

slit, we find
[

Φ0
dΦ∗

−1

dy

]1/2

−1/2

=
(

4Ω̄2Ω′ + C
)

ˆ 1/2

−1/2
|Φ−1|2dy. (3.25)

Substituting (3.19) and using (2.13) gives

A=
2Ω̄im

4Ω′Ω̄2 + C ×
{

iΦ0(1/2) + iΦ0(−1/2)

Φ0(1/2) − Φ0(−1/2)

}

. (3.26)

(e) Matching and transition regions

It remains to relate the approximations found in the exterior and slit regions. Given the

logarithmic singularity of the leading-order exterior fields, these regions cannot be matched

directly. Rather, it is necessary to consider intermediate “transition regions” at O(h) distances
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from the slit ends. It is clear from the preceding analyses of the slit and exterior regions that

H and p are O(1) in these regions. The scaling arguments in §3(b) show that boundary-layer

effects are not important at this order. The leading-order aperture problem is therefore the same

as the one formulated and solved in [20], as are the details of the asymptotic matching between

the transition regions and the slit and exterior regions. We shall simply quote the results of that

analysis that are relevant here.

The first result is a relation between the diffraction amplitudes Q± appearing in the O(1)

exterior fields and the rescaled amplitude A of the enhanced O(h−1) standing wave in the slit. It

can be written as

Q± = imΩ̄A×
{

1

∓i

}

. (3.27)

The second result connects the diffraction coefficients Q± with the O(1) discontinuity in the wave

field across the aperture, with the singularity of the exterior field subtracted. This relation can be

written as

lim
r±→0

(

ϕ± − 2i

π
Q± ln r±

)

− Φ0|y=±1/2 = iQ±
(

2

π
ln

1

h
− β

)

, (3.28)

where the parameter β depends only on the geometry of the slit opening; for the right-angled

aperture considered here, the conformal-mapping analysis in [20] yields the value

β =
2

π

(

ln
4

π
− 1

)

≈−0.4828. (3.29)

Substituting the external fields ϕ± from (3.8) and (3.9), and using the asymptotic relation (3.7),

we can solve (3.28) for the end values of the O(1) slit field:

Φ0|y=±1/2 =Q± 2i

π

(

ln
2Ω̄h

π
+ γE − 1− iπ

2

)

+ (1∓ 1)e−iΩ̄/2. (3.30)

Note the logarithmic dependence upon h in (3.30). This relation assumes an asymptotic

convention where logarithmic orders are considered together with the nearest algebraic order

[22, 23]. All small-h expansions in this paper are to be interpreted in this manner.

0 2 3 4
0

50

100

150

200

250

300

350

Figure 2. Enhancement of the slit field predicted by the near-resonance approximation (3.31) as a function of the

dimensionless frequency Ω. The slit aspect ratio is h= 0.01. Black dashed lines: idealised problem without dissipation.

Red solid lines: thermoviscous-acoustic scenario assuming air at 20 ◦C and slit length l= 35mm [14]. The vertical

dotted lines mark the unperturbed standing-wave frequencies.
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(f) Frequency response

Solving (3.26), (3.27) and (3.30) for the amplitude A yields

A=
1/Ω̄

Ω′ + C
4Ω̄2

− 2
π

(

ln 2Ω̄h
π + γE − 1

)

+ i
×

{

i

−1

}

, (3.31)

which provides a closed-form approximation for the near-resonance frequency response. The

corresponding results for the diffraction coefficients Q± can be obtained by substituting (3.31)

into (3.27).

Recall that (3.31) was derived assuming the distinguished limit δ =O(h2). Based on the

scaling arguments in §3(b), however, it can be shown that (3.31) actually holds as a leading-

order approximation over the wider regime δ≪ h; thus, our analysis breaks down only in

the alternative distinguished limit δ =O(h), namely when the boundary-layer thickness is

comparable to the slit width, in which case the resonance is no longer weakly damped [28]. In

other words, the distinguished limit δ =O(h2) was chosen as it describes all regions in δ − h

parameter space where the slit resonances are weakly damped.

To illuminate the different regimes described by (3.31), note that the boundary-layer parameter

C =O(δ/h2) and recall definition (2.14) for Ω′. Thus, for δ≪ h2, dissipation effects are negligible

and (3.31) reduces to its lossless counterpart derived in [20]. For δ≫ h2, however, (3.31) implies

a sharp resonance only if δ≪ h; for h2 ≪ δ≪ h, the resonance is weakly damped and limited by

dissipation. In that case, the resonance width is Ω − Ω̄ =O(δ/h) and the amplitude of the wave

in the slit is O(h/δ). As already noted, for δ =O(h2) radiation damping and dissipative losses are

comparable and the scalings are therefore the same as in the lossless case.

In Fig. 2 we plot the enhancement factor h−1|A| as a function of the dimensionless frequency

Ω. As an example, we set h= 0.01 and compare the idealised case with the thermoviscous-

acoustic scenario assuming the physical parameters of the experiments in [14]. Note that the

resonance peaks are shifted from the standing-wave values Ω̄, more so when dissipation is

included.

As already discussed in [20], the lossless version of this problem was first analysed

asymptotically by Lin and Zhang based on layer-potential techniques [17]. In our view, the

analysis in [17] is highly technical compared to the simple and physically insightful treatment in

[20] using matched asymptotics. Moreover, while the asymptotic results in [17] are of similar form

to those in [20], or (3.31) with C = 0, they involve a constant, denoted α, which is not calculated.

An anonymous Referee commented that the constant α can be calculated from expressions in [17].

This Referee gives the numerical value α=−1.10702189 . . ., which is close to the precise value

α=−π/(1 + ln 2π) =−1.10702210 . . . implied by comparison with our closed-form results.

(g) Comparison with single-slit electromagnetic and acoustic experiments

A closed-form approximation for the resonance frequencies is readily extracted from (3.31). For

the sake of comparison with experimental data, we write this in the form

∆fm
fm

≈ 4h

π
(ln h+ ln(2m) + γE − 1) − h

2Ω̄2
ReC, (3.32)

where ∆fm is the dimensional frequency deviation of the mth resonant peak from the respective

standing-wave frequency fm =mc/2l.

In Figs. 3 and 4 we test (3.32) against GHz-microwave experiments [6] and kHz-acoustic

experiments [14], respectively. The agreement is very good in both cases. In contrast, the lossless

approximation with C = 0 is not accurate for very narrow slits (below approximately 200µm in

the microwave experiments and 1.5mm in the acoustic experiments).
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Figure 3. Resonance frequencies as a function of slit width for electromagnetic-wave transmission through a single slit

in an aluminium plate of thickness l=19.58mm. Thick blue lines: approximation (3.32) with C given by (3.21). Dashed

black lines: approximation (3.32) for the lossless case C = 0 [20]. Symbols: microwave experiments [6]. The relative

permittivity of the metal is ǫ≈ i4.2× 107 and ǫ≈ i4.5× 106 for modes m= 2 and m=9, respectively.
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]

Figure 4. Same as Fig. 3 but for the fundamental resonance of acoustic-wave transmission through a slit in an aluminium

plate of thickness 35mm. The thick blue line is calculated from (3.32) with C calculated from (3.22) for air at 20 ◦C.

Symbols: acoustic experiments [14].

(h) Electromagnetic skin layer

It remains to derive the effective boundary conditions (3.20) assumed in the slit-region analysis.

We begin with the simpler electromagnetic scenario, where we need to consider the internal field

H̄ in the electromagnetic skin layers, namely at distances O(δ) from the slit boundaries. Because of

the symmetry of the problem, it suffices to consider the skin layer adjacent to the lower boundary

of the slit x=−h. Since δ =O(h2), we define the strained transverse coordinate X′ = (x+ h)/h2

and consider the domain X′ < 0 (|y|< 1/2).

Recall the slit-field expansion (3.12) for H =Φ. In particular, the O(h−1) enhancement of the

slit field suggests the skin-layer expansion

H̄ ∼ h−1H̄−1(X
′, y) as h→ 0. (3.33)
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The equation governing H̄−1 is obtained from the leading-order balance of (2.2b). This gives

∂2H̄−1

∂X′2
+ α2Ω̄2H̄−1 = 0 for X′ < 0, (3.34)

where the complex-valued parameter α was defined in (2.16). From the O(1/h) balance of the

continuity condition (2.3a), we find the boundary condition

H̄−1 =Φ−1 at X′ =0. (3.35)

Solving (3.34) subject to (3.35) and the condition that H̄−1 decays as X′ →−∞ gives

H̄−1 = e−iαΩ̄X′
Φ−1. (3.36)

Consider now the O(h) balance of the transmission condition (2.3b),

∂Φ2

∂X

∣

∣

∣

∣

X=−1

=
1

α2

∂H̄−1

∂X′

∣

∣

∣

∣

X′=0

. (3.37)

Substituting (3.36), we obtain the effective boundary condition

∂Φ2

∂X
=− iΩ̄

α
Φ−1 at X =−1. (3.38)

The corresponding condition at X = 1 follows from symmetry. Using definition (2.16) for α, (3.38)

implies the effective boundary condition (3.20) with C given by (3.21).

(i) Thermoviscous boundary layer

We next consider the acoustic scenario, where we need to match the thermoviscous boundary

layers with the bulk slit region. As a preliminary step, it is convenient to expand the description

of the bulk slit region from the single field p=Φ to include the normalised flow and temperature

fields, u= uêx + vêy and T , respectively. To this end, we rewrite the slit expansion (3.12) in the

form

p= h−1Φ−1(y) + Φ0(y) + hΦ1(y) + h2Φ2(X, y) + · · · as h→ 0. (3.39)

Note that the independence of Φ−1, Φ0 and Φ1 upon X was determined in §3(d) based on

the scaling (3.11), which is consistent with the boundary-layer analysis here. Given (3.39), the

momentum equation (2.7) implies the expansions

u∼−ih
∂Φ2

∂X
, v∼−ih−1 dΦ−1

dy
as h→ 0. (3.40a, b)

Similarly, the energy equation (2.8) implies the temperature expansion

T ∼ h−1Φ−1 as h→ 0. (3.41)

Consider now the O(δ) boundary layer adjacent to the lower slit boundary x=−h. Since δ =

O(h2), we define the transverse coordinate X′ = (x+ h)/h2, the boundary-layer domain being

X′ > 0 (|y|< 1/2). The slit-region expansions (3.39)–(3.41) suggest expanding the acoustic fields

in the boundary layer as

p∼ h−1P̄−1(X
′, y), T ∼ h−1T̄−1(X

′, y), u∼ hŪ1(X
′, y), v∼ h−1V̄−1(X

′, y). (3.42a−d )

The leading O(h−3) balance of the x component of the momentum equation (2.7) gives

∂P̄−1

∂X′ = 0, (3.43)

showing that P̄−1 is independent of X′. With that, straightforward matching of the boundary

layer and slit-region pressure fields yields

P̄−1 =Φ−1(y). (3.44)



14

rs
p
a
.ro

ya
ls

o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0
0
0
0
0
0
0

..........................................................

With (3.44), the O(h−1) balance of the y component of the momentum equation (2.7) can be

written

δ′
2 ∂2V̄−1

∂X′2
+ iV̄−1 =

dΦ−1

dy
, (3.45)

where we remind that δ′ = δ/h2. The no-slip condition (2.10) gives the boundary condition

V̄−1 =0 at X′ = 0. (3.46)

Furthermore, matching the v velocity component yields the far-field condition

V̄−1 →−i
dΦ−1

dy
as X′ →∞. (3.47)

Solving (3.45) subject to (3.46) and (3.47), we find

V̄−1 = i

(

e
− 1−i√

2

X′
δ′ − 1

)

dΦ−1

dy
. (3.48)

The leading O(h−1) balance of the energy equation (2.8), with (3.44), reads

Pr−1δ′
2 ∂2T̄−1

∂X′2
+ iT̄−1 = iΦ−1. (3.49)

From (2.11), we find the boundary condition

T̄−1 =0. (3.50)

Furthermore, leading-order matching of the temperature field gives the far-field condition

T̄−1 →Φ−1 as X′ →∞. (3.51)

Solving (3.49) subject to (3.50) and (3.51), we find

T̄−1 =

(

1− e
− 1−i√

2

X′√
Pr

δ′
)

Φ−1. (3.52)

Consider now the leading O(h−1) balance of the continuity equation (2.6),

∂Ū1

∂X′ =−∂V̄−1

∂y
+ iΩ̄2P̄−1 + i(γ − 1)Ω̄2 (P̄−1 − T̄−1

)

, (3.53)

which is supplemented by the boundary condition [cf. (2.10)]

Ū1 = 0 at X′ = 0. (3.54)

Integrating (3.53) using (3.54), followed by taking the limit X′ →∞ using the slit-region

Helmholtz equation (3.17), yields

Ū1 →−δ′Ω̄2 1− i√
2

(

1 +
γ − 1√

Pr

)

Φ−1 as X′ →∞. (3.55)

Matching the velocity component u then furnishes the effective boundary condition

∂Φ2

∂X
=−δ′Ω̄2 1 + i√

2

(

1 +
γ − 1√

Pr

)

Φ−1 at X =−1. (3.56)

The corresponding condition at X = 1 follows from symmetry. Together these give expression

(3.22) for the parameter C.

We emphasise that the effective condition (3.56) relies on the one-dimensional nature of the

wave propagation in the bulk slit region and the related independence of Φ−1, Φ0 and Φ1 on

the transverse coordinate X . When the bulk field is multi-dimensional, the viscous effect gives a

contribution to the effective boundary condition proportional to the surface Laplacian of the bulk

pressure, rather than the bulk pressure itself [29]. Given (3.17), in the present case Φ−1 and its

surface Laplacian are in fact proportional.
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Figure 5. Dimensionless schematic of the problem of transmission through a periodic array of slits.

4. Extension to a periodic slit array

(a) Formulation

Consider now a more complex configuration where the plate is decorated with an infinite array

of slits, say of dimensional period 2dl. Fig. 5 depicts the dimensionless geometry, with the origin

of the Cartesian coordinates (x,y) placed at the centre of an arbitrary slit. As before, we assume

a normally incident plane wave. In that case, the electromagnetic and acoustic fields possess the

same periodicity as the array. Accordingly, the problem can be restricted to the unit-cell |x|<d,

say, with periodicity conditions applied on the cell boundaries x=±d.

(b) Analysis and frequency response

We shall extensively build on the near-resonance theory developed in §3 for a single slit. Thus,

in the exterior regions, the periodicity of the problem suggests that the leading O(1) fields ϕ±

generalise as [cf. (3.8) and (3.9)]

ϕ− = eiΩ̄y + e−iΩ̄(1+y) +Q−
∞
∑

n=−∞

H0

(

Ω̄r−n

)

, ϕ+ =Q+
∞
∑

n=−∞

H0

(

Ω̄r+n

)

, (4.1a, b)

where we define the shifted radial coordinates r±n =
√

(x− 2nd)2 + (y ∓ 1/2)2 . We next couple

these exterior fields to the bulk slit field, using the matching formulae (3.27) and (3.28). For this

purpose, we consider just the slit in the unit-cell |x|< d. The expansion of the wave field in the slit

region has exactly the same form as in the single-slit case, with A denoting the complex amplitude

of the resonantly excited standing wave at O(1/h). Thus, analogously to (3.30), we find the end

values of the slit field at O(1) in the form

Φ0(±1/2) = iQ±β +Q±
[

1 +
2i

π

(

ln
Ω̄h

2
+ γE

)

+ σ(Ω̄d)

]

+ (1∓ 1)e−
iΩ̄
2 , (4.2)

in which the function σ(Ω̄d) is formally given by the conditionally convergent lattice sum

σ(Ω̄d) =
∑

n6=0

H0

(

2Ω̄|n|d
)

. (4.3)

For computation, this sum is transformed into the absolutely converging sum (see [30])

σ(Ω̄d) =−1− 2i

π

(

γE + ln
Ω̄d

2π

)

− i

χ0
− i

∑

n6=0

(

1

χn
− 1

π|n|

)

, (4.4)



16

rs
p
a
.ro

ya
ls

o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0
0
0
0
0
0
0

..........................................................

2 3
0

0.2

0.4

0.6

0.8

1

Figure 6. Modulus of the transmission coefficient for acoustic transmission through a plate of thickness l= 19.8mm

decorated by a periodic array of slits of width w=2hl and period 2dl=w + 2.91mm (dimensions from [14]), for

h= 0.01. Solid line: approximation (4.9) with C given by (3.22) for air at 20 ◦C. Dashed line: approximation (4.9) for the

lossless case C =0.

wherein

χn =

{
√

π2n2 − Ω̄2d2, |n|> Ω̄d/π,

−i
√

Ω̄2d2 − π2n2, |n|< Ω̄d/π.
(4.5)

Along the lines of the single-slit analysis, we solve (3.26), (3.27) and (4.2) for the complex

amplitude A. We thereby find the generalised near-resonance approximation

A=
1/Ω̄

Ω′ + C
4Ω̄2

− 2
π

(

ln 2Ω̄h
π + γE − 1

)

+ i(1 + σ(Ω̄d))
×

{

i

−1

}

. (4.6)

The corresponding formulae for Q± follow from (3.27).

Similar results, but limited to the lossless case, where obtained by Lin and Zhang based on

layer-potential techniques [18]. As in their earlier analysis of the lossless single-slit problem [17],

their results involve the constant α discussed below (3.31).

Comparing (4.6) with (3.31), we see that the generalisation to a periodic array enters through

the complex-valued function σ(Ω̄d). Its real part contributes to radiative damping of the slit

mode, while its imaginary part shifts the resonances to lower frequencies. In the above analysis,

we tacitly held d fixed; namely, we assumed that the periodicity is comparable with the wall

thickness and the wavelength. It can be verified, however, that (4.6) holds as a leading-order

approximation for δ≪ h≪ d. We note that the case of an ultra-subwavelength array, d=O(h),

was analysed in the lossless problem [19].

In particular, for large d, σ attenuates and (4.6) reduces to (3.31). For small d (subwavelength

periodicity), σ(Ω̄d)∼ (Ω̄d)−1; it follows that the slit fields are more strongly damped by

radiation than in the single-slit scenario. In that case, we have that dissipative and radiative

losses are comparable for δ =O(h2/d), thicker than implied by the single-slit, or order-unity d,

distinguished scaling. Then, if δ≫ h2/d, dissipation is the dominant loss mechanism and the

resonance width is |Ω − Ω̄|=O(δ/h). If δ≪ h2/d, then the dominant loss mechanism is the

enhanced radiation damping; the resonance width is then |Ω − Ω̄|=O(h/d).
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Figure 7. Frequency of fundamental resonance as a function of slit width w= 2hl for acoustic-wave transmission through

a periodic array of slits, of period 2dl=w + 2.91mm, in an aluminium plate of thickness l=19.8mm. Thick red line:

approximation (4.10) with C given by (3.22) for air at 20 ◦C. Dashed black line: approximation (4.10) for the lossless

case C =0. Symbols: acoustic experiments [14].

(c) Reflection and transmission

Consider next the field at large distances from the plate. To this end, we shall use the asymptotic

relation (see [30])

∞
∑

n=−∞

H0

(

Ω̄r±n

)

∼
⌊Ω̄d/π⌋
∑

n=−⌊Ω̄d/π⌋

e
i
{

πnx
Ω̄d

±
√

Ω̄2d2−π2n2 y∓1/2
d

}

√

Ω̄2d2 − π2n2
as y→±∞. (4.7)

In particular, when the period of the array is smaller than the wavelength (Ω̄d < π), the finite sum

on the right-hand side of (4.7) reduces to a single plane-wave term. In that case, we find from (4.1)

the far-field behaviours

ϕ− ∼ eiΩ̄y +Re−iΩ̄y as y→−∞, ϕ+ ∼ T eiΩ̄y as y→∞, (4.8a, b)

where we define the complex-valued reflection and transmission coefficients

R= e−iΩ̄ +
Q−

Ω̄d
e−

iΩ̄
2 , T =

Q+

Ω̄d
e−

iΩ̄
2 . (4.9a, b)

In Fig. 6 we plot |T | for h= 0.01 and with the remaining geometric dimensions from the

slit-array acoustic experiments in [14]. In particular, we compare the lossless case C = 0 and the

thermoviscous-acoustic scenario where C is provided by (3.22) for air at 20 ◦C. In the lossless case,

we observe perfect transmission at frequencies shifted slightly downwards from the unperturbed

standing-wave frequencies. The thermal and viscous effects are seen to diminish the transmission

peaks and shift these to yet lower frequencies.

(d) Comparison with slit-array acoustic experiments

A closed-form approximation for the resonance frequencies can be readily extracted from (4.6).

We write this as

∆fm
fm

≈ 4h

π
(lnh+ ln 2m+ γE − 1)− h

2π2m2
ReC + 2h Imσ(md), (4.10)
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where ∆fm is again the deviation of the mth resonance frequency from the corresponding

unperturbed standing-wave frequency fm. In Fig. 7 we test (4.10) against the acoustic slit-array

experiments in [14]. The agreement is very good.

5. Concluding remarks

We have developed an asymptotic theory describing resonant electromagnetic- and acoustic-

wave transmission through slitted plates. The theory provides simple scaling rules and analytical

approximations that accurately capture both diffractive and dissipative effects, as demonstrated

through a comparison with experimental results in the literature. We hope that this work

showcases the power of scaling arguments, matched asymptotics and near-resonance expansions

for modelling structured-wave devices. Thus, the present theory can be readily adapted to other

configurations where resonant slits are used to manipulate or absorb waves [15, 16, 31]. A similar

approach could also be developed for three-dimensional hole resonators [32]. An analogous

theory for acoustic Helmholtz resonators embedded in a wall and arrays thereof has recently

been developed by two of us [26].

We conclude with comments regarding the generalised electromagnetic-acoustic analogy

identified in this paper. First, this analogy is asymptotic, in contrast to the exact analogy between

the respective lossless problems. Second, the generalised analogy relies on the findings that (i)

boundary-layer effects are only appreciable in the slit region and (ii) the propagation within the

bulk of the slit is effectively one-dimensional. This suggests that the analogy could be extended

to other slit configurations where boundary-layer effects are important. In general, however,

thermoviscous boundary layers and electromagnetic skin layers are described by different types

of effective boundary conditions.
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