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Nonlinear electrophoresis at arbitrary field strengths:
small-Dukhin-number analysis
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Department of Mathematics, Technion—Israel Institute of Technology, Haifa, Israel

(Received 10 February 2014; accepted 10 November 2014; published online 2 December
2014)

Smoluchowski’s formula for thin-double-layer electrophoresis does not apply for
highly charged particles, where surface conduction modifies the electrokinetic trans-
port in the electro-neutral bulk. To date, systematic studies of this nonzero Dukhin-
number effect have been limited to weak fields. Employing our recent macroscale
model [O. Schnitzer and E. Yariv, “Macroscale description of electrokinetic flows at
large zeta potentials: Nonlinear surface conduction,” Phys. Rev. E 86, 021503 (2012)],
valid for arbitrary Dukhin numbers, we analyze herein particle electrophoresis at small
(but finite) Dukhin numbers; valid for arbitrary fields, this asymptotic limit essentially
captures the practical range of parameters quantifying typical colloidal systems. Per-
turbing about the irrotational zero-Dukhin-number flow, we derive a linear scheme
for calculating the small-Dukhin-number correction to Smoluchowski’s velocity. This
scheme essentially amounts to the solution of a linear diffusion–advection problem
governing the salt distribution in the electro-neutral bulk. Using eigenfunction expan-
sions, we obtain a semi-analytic solution for this problem. It is supplemented by
asymptotic approximations in the respective limits of weak fields, small ions, and
strong fields; in the latter singular limit, salt polarization is confined to a diffusive
boundary layer. With the salt-transport problem solved, the velocity correction is
readily obtained by evaluating three quadratures, corresponding to the contributions of
(i) electro- and diffuso-osmotic slip due to polarization of both the Debye layer and
the bulk; (ii) a net Maxwell force on the electrical double layer; and (iii) Coulomb
body forces acting on the space charge in the “electro-neutral” bulk. The velocity
correction calculated based upon the semi-analytic solution exhibits a transition from
the familiar retardation at weak fields to velocity enhancement at moderate fields;
this transition is analytically captured by the small-ion approximation. At stronger
fields, the velocity correction approaches a closed-form asymptotic approximation
which follows from an analytic solution of the diffusive boundary-layer problem. In
this régime, the correction varies as the 3/2-power of the applied field. Our small-
Dukhin-number scheme, valid at arbitrary field strengths, naturally lends itself to a
tractable analysis of nonlinear surface-conduction effects in numerous electrokinetic
problems. C 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4902331]

I. INTRODUCTION

A. Background

Smoluchowski’s celebrated electrophoresis formula predicts a particle velocity linear in both
the applied-field magnitude and zeta potential.1,2 The derivation of this formula hinges on the
prevalent assumption that the Debye thickness is small compared with particle size; under these
conditions, the formula holds universally for particles of arbitrary shape and size.3 Smoluchowski’s
formula is useful in estimating zeta potentials from mobility measurements.4,5 These predictions are
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of great utility as the zeta potential is related to the surface charge of the particle6 whose value is
important in many aspects of colloid science, such as in predicting the stability of solutions.

Notwithstanding its fundamental role, it is well known that Smoluchowski’s formula is invalid
for highly charged particles.7 As originally explained by Dukhin and coworkers,8,9 the high surface
charge results in an exponential amplification of the counterion concentration near the surface,
enabling significant ionic currents through the diffuse portion of the double layer. This “surface
conduction” mechanism affects the dominant electrokinetic transport through counterion exchange
between the diffuse-charge (“Debye”) layer and the surrounding electro-neutral bulk. The elec-
trophoretic velocity of the particle is accordingly modified. Employing a weak-field linearization,
O’Brien and coworkers calculated the resulting electrophoretic velocity, which turns out smaller
than the Smoluchowski value.10,11

Formally speaking, appreciable surface conduction requires zeta potentials which are logarith-
mically large with respect to the small double-layer thickness, i.e., non-negligible Dukhin numbers
[cf. (29) and (34)]. Practically, this implies rather moderate zeta-potential values even at very
thin double layers, suggesting in turn that surface conduction, absent in Smoluchowski’s picture,
actually plays a role in many practical systems. It is unsurprising then that the papers of O’Brien
and his coworkers have attracted significant attention. Indeed, following these papers, surface
conduction effects were analyzed in the context of numerous electrokinetic phenomena, including
electro-viscous forces,12,13 dielectric enhancement,14,15 and diffuso-phoresis.16 More recent anal-
yses, by Khair and Squires, are motivated by microfluidic applications; these address patterned
surfaces,17 surface-charge discontinuities18 (see Ref. 19), and the arrest of flow amplification trig-
gered by the combination of hydrodynamic and electrokinetic slip.20 An important consequence of
surface conduction is the breakdown of Morrison’s prediction of a shape-independent electropho-
retic mobility. Unsurprisingly then, the work of O’Brien and coworkers was also followed by the
analyses of both specific21,22 and generic23 non-spherical geometries.

B. Nonlinear macroscale model

It is important to note that all of the above-mentioned papers are restricted to weak fields. In
particular, both the models of O’Brien and coworkers and their numerous extensions yield elec-
trophoretic velocities which are linear in the field. This is a serious limitation on the applicability
of these models to practical systems, where the potential drop associated with the applied field
is not necessarily small when compared with the thermal voltage [about 25 mV for a univalent
electrolyte—see (2)]. In that respect, it is worth recalling that Smoluchowski’s formula, despite
being linear in the applied field, is not restricted to weak fields.24

In principle, one can investigate surface-conduction effects beyond weak fields by numerically
solving the standard “microscale” electrokinetic model (see Refs. 24 and 25). Because of the scale
disparity existing in the thin-double-layer limit, however, this is a formidable task. The alternative
is the extension of O’Brien’s generic thin-double-layer analysis11 beyond the weak-field régime
via the construction of a generic “macroscale” model of electrokinetic flows about highly charged
surfaces, where the electrokinetic processes occurring within the narrow diffuse-charge layer appear
as effective boundary conditions. This procedure effectively removes the scale disparity.

Such a macroscale model, valid for arbitrary field strengths, was recently provided by Schnitzer
and Yariv24 (it is denoted hereafter the SY model). As this model preserves the inherent nonlinearity
of the microscale description, it cannot be solved in closed form even for the simplest problem
of spherical-particle electrophoresis. Nonetheless, the effective removal of the scale disparity al-
lows for the use of various approximation methods, or, alternatively, the use of standard numerical
schemes.

The SY model was used by Schnitzer et al.26 who revisited the weak-field limit of particle elec-
trophoresis. Going beyond the linear approximation of O’Brien and Hunter,10 this weakly nonlinear
analysis yields a correction term, proportional to the applied-field cubed (improving and correct-
ing earlier ad hoc expressions.27) This is the first step in understanding nonlinear electrophoretic
response.
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C. Small Dukhin numbers

As we have already mentioned, the weak-field approximation is simply inadequate in many
practical applications. It may therefore appear that the next logical step, following the weakly
nonlinear analysis of Ref. 26, would be a numerical solution of the SY model. Initial attempts in that
direction are actually presented in Ref. 26, where the weakly nonlinear analysis was corroborated
by a finite-difference solution.

There is however another route. When considering typical zeta potentials of highly charged
colloids, one readily notices that the corresponding Dukhin numbers are still relatively small.28

This suggest an asymptotic analysis of the SY model in the limit of small (but nonzero) Dukhin
number, allowing for arbitrary field strengths. This limit, which covers a significant practical range
of the governing parameters, is analytically tractable. The scheme proposed herein thus entails
a linearization of the SY model about the zero-Dukhin-number solution (which coincides with
Smoluchowski’s intuitive thin-double-layer picture). This procedure should be contrasted with the
familiar weak-field analyses,10,11 where the linearization is carried about the equilibrium configura-
tion in the absence of an applied field. Thus, while the electrophoretic velocity predicted by these
analyses is linear in the applied field [and generally nonlinear in the Dukhin number, see (68)], the
present scheme provides a velocity correction to Smoluchowski’s velocity which is linear in the
Dukhin number but is, in general, nonlinear in the field.

Earlier attempts to exploit the smallness of the Dukhin number have appeared in several papers by
the Ukrainian school.29–31 Unlike the present analysis, these were not based upon a macroscale model.
Moreover, while the present study allows for an arbitrary field magnitude, these papers appear to focus
upon the respective limits of weak and strong fields. We do not fully understand the key assumptions
underlying these papers, nor the resulting analyses. While certain elements in these analyses appear
similar to those in the present contribution, the resulting approximations do not coincide.

The rest of the paper is structured as follows. In Sec. II, we describe the physical problem and
the governing microscale model. Using the SY paradigm, we formulate in Sec. III the corresponding
macroscale problem. In Sec. IV, we address the limit of small Dukhin numbers, providing a linear
scheme for correcting Smoluchowski’s formula. In Sec. V, we present a semi-analytic solution of this
linear problem. In Sec. VI, we derive approximate solutions in the limits of weak fields, small ions, and
strong fields. We discuss the results in Sec. VII. Appendix A outlines the details of the semi-analytic
solution. Appendix B presents the singular boundary-layer analysis of the strong-field limit.

II. PROBLEM FORMULATION

The problem we consider is depicted in Fig. 1. A dielectric spherical particle (radius a∗) is
suspended in a symmetric (ionic valencies ±Z) binary electrolyte (viscosity µ∗, permittivity ϵ∗). The
diffusivities of the cations and anions are D∗±. The particle is uniformly charged, say with a surface
charge density σ∗ (which, with no loss of generality, is taken to be positive). Due to this immobile
charge layer, a Debye layer of a characteristic thickness 1/κ∗ is formed, with κ∗ defined by

κ∗2 =
2Ze∗c∗

ϵ∗ϕ∗
(1)

in which c∗ is the equilibrium ion concentration and

ϕ∗ =
k∗T∗

Ze∗
(2)

is the thermal voltage (k∗T∗ being the Boltzmann temperature and e∗ the elementary charge). Far
away from the particle, both species are at equilibrium, possessing the uniform concentration c∗. A
steady and uniform electric field of magnitude E∗ is externally applied, resulting in the electropho-
retic motion of the particle. Our goal is to calculate the ensuing particle velocity U∗ relative to the
otherwise quiescent liquid.

The starting point of the analysis is the “exact” microscale electrophoresis problem, based
upon the standard electrokinetic model. We employ the dimensionless formulation of Ref. 24,
where length variables are normalized by a∗, the electric potential ϕ by the thermal voltage ϕ∗,
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FIG. 1. Schematics of the problem: a dielectric spherical particle possessing a uniform surface charge density is suspended in
an electrolyte solution and exposed to a uniform electric field of magnitude E∗, resulting in its motion with an electrophoretic
velocity U∗. The macroscale boundary conditions of the SY model apply at an effective boundary lying at the outer edge of
the electrical double layer.

the fluid velocity u by u∗ = ϵ∗ϕ∗2/µ∗a∗, and stress variables by the Maxwell scale ϵ∗ϕ∗2/a∗2. The
non-dimesionalization procedure results in the following dimensionless groups:

1. The dimensionless Debye thickness

δ =
1

κ∗a∗
. (3)

2. The dimensionless surface charge density

σ =
σ∗

ϵ∗κ∗ϕ∗
. (4)

3. The dimensionless applied-field magnitude

E =
E∗a∗

ϕ∗
. (5)

4. The ratio γ of the respective dielectric constants in the solid and liquid phases.
5. The ionic drag coefficients

α± =
ϵ∗ϕ∗2

µ∗D±∗
. (6)

Because of the Stokes–Einstein relation, D±∗ can be expressed as k∗T∗/ξ±µ∗l±∗, where l±∗ are
the effective radii of the ions and ξ± are O(1) shape-dependent numerical coefficients (e.g., 6π
for spherical ions). We accordingly find the more fundamental expressions

α± =
ξ±l±∗ϵ∗ϕ∗2

k∗T∗
, (7)

which are linear in the ion size (and independent of µ∗). For typical aqueous solutions,

α± . 0.5. (8)

In terms of the above parameters, formulation of the microscale problem is straightforward.
The mean (“salt”) ionic concentration c (scaled by c∗) and charge density q (scaled by 2Ze∗c∗) are
governed by the Nernst–Planck equations

∇ · (∇c + q∇ϕ) = α+ + α−

2
u · ∇c +

α+ − α−

2
u · ∇q, (9)

∇ · (∇q + c∇ϕ) = α+ − α−

2
u · ∇c +

α+ + α−

2
u · ∇q; (10)

the electric potential is governed by Poisson’s equation

δ2∇2ϕ = −q; (11)
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and the flow is governed by the continuity

∇ · u = 0; (12)

and inhomogeneous Stokes

∇p = ∇2u + ∇2ϕ∇ϕ (13)

equations, where p denotes the pressure field.
The preceding equations are supplemented by appropriate boundary conditions. Given the

symmetry of the problem, these are naturally provided using particle-fixed spherical coordinates
(r, θ,ϖ), r = 0 coinciding with the particle center and θ = 0 in the applied field direction (provided
by the unit vector ı̂). (All scalar fields and velocity components are independent of ϖ.) At the
particle boundary r = 1, we impose the no-flux conditions

∂c
∂r
+ q

∂ϕ

∂r
= 0,

∂c
∂r
+ c

∂ϕ

∂r
= 0; (14)

impermeability and no-slip

u = 0; (15)

and Gauss’s boundary condition

∂ϕ

∂r
= −δ−1σ + γ

∂ϕs

∂r
, (16)

wherein ϕs is the electric potential in the solid particle.32 At large distances from the particle, the
ionic concentrations approach their reference value, whereby

c → 1, q → 0; (17)

the electric field approaches the uniformly imposed field

ϕ ∼ −Er cos θ; (18)

and the velocity field approaches a uniform velocity

u→ −U ı̂, (19)

where U = U∗/u∗.
In addition to the above conditions, the pertinent fields must also satisfy the requirement that

the total force acting on the particle vanishes. This force is contributed by both Newtonian

N = −p I + (∇u) + (∇u)† (20)

and Maxwell

M = ∇ϕ∇ϕ − 1
2
∇ϕ · ∇ϕ I (21)

stresses. Because of axial symmetry, it is sufficient to impose the scalar condition

ı̂ ·


r=1

n̂ · (N +M) dA = 0. (22)

(The additional requirement of a zero torque is trivially satisfied.) Since the Stokes equation (13)
equivalently states that the total stress N +M is divergence free, the integral appearing in condition
(22) may be evaluated over any closed surface enclosing the particle boundary r = 1.

The particle velocity U, appearing in condition (19), is a function of the dimensionless groups
(3)–(6).

III. THIN-DOUBLE-LAYER LIMIT: MACROSCALE FORMULATION

In what follows, we consider the thin-double-layer limit

δ ≪ 1, (23)
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where the fluid domain outside the thin Debye layer is approximately electro-neutral. In this limit,
we replace the microscale model (9)–(22) by the macroscale SY model, describing the trans-
port in this electro-neutral “bulk.” Hereafter, we accordingly interpret all variables as representing
the leading-order terms in their respective asymptotic expansions (in δ) within the bulk. In the
thin-double-layer limit (23), it readily follows from (11) that this region becomes electro-neutral at
leading order, q ≡ 0. The salt- and charge-balance equations (9) and (10) thus become

∇2c = αu · ∇c, ∇ · (c∇ϕ) = άu · ∇c, (24)

where we define, for convenience,

α =
α+ + α−

2
, ά =

α+ − α−

2
. (25)

The flow equations (12) and (13) are unaltered

∇ · u = 0, ∇p = ∇2u + ∇2ϕ∇ϕ. (26)

(While the bulk is approximately electro-neutral, the asymptotically small volumetric charge den-
sity still results in a Coulomb body force in the leading-order momentum balance.24) The far-field
conditions are summarized as

ϕ ∼ −Er cos θ, u→ −U ı̂, c → 1 as |x| → ∞, (27)

wherein x is a position vector measured from the particle center. While the force-free condition (22)
retains its form,

ı̂ ·


r=1

n̂ · (N +M) dA = 0, (28)

the stresses appearing in (28) are now evaluated at the outer edge of the Debye layer (where r = 1
is hereafter reinterpreted), rather than the genuine particle boundary—see Figure 1. In the macro-
scale description, these two surfaces geometrically coincide. While for weak fields, the “outer”
Maxwell-stress contribution to the stress integral trivially vanishes, this is not necessarily the case in
general.

The essence of the SY model lies in the effective boundary conditions representing the elec-
trokinetic transport within the Debye cloud. These conditions, replacing the exact conditions
(14)–(16), also apply at the outer edge of the thin double layer. The derivation of the SY model
allows for the possibility of a highly charged surface, where σ is comparable to δ−1. This is explicit
in the appearance of the dimensionless group [see (30)]

Du = (1 + 2α−)δσ, (29)

namely, the Dukhin number. Thus, a zero Dukhin number represents the case where surface conduc-
tion is negligible.33

The effective boundary conditions at the effective boundary r = 1 consist of the flux-matching
conditions

∂c
∂r
+ c

∂ϕ

∂r
= 0,

∂c
∂r
= Du∇2

s(ϕ − ln c), (30)

where

∇2
s =

1
sin θ

∂

∂θ


sin θ

∂

∂θ


(31)

is the surface-Laplacian operator, together with the slip condition

u = ζ∇sϕ − 4 ln (cosh(ζ/4))∇s ln c, (32)

where

∇s = êθ
∂

∂θ
(33)
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is the surface-gradient operator. The zeta potential ζ appearing in (32) is the leading-order Debye
layer voltage; it is given by

σ = 2
√

c sinh
ζ

2
, (34)

in which the dimensionless charge density σ is defined in (4) and c is evaluated at r = 1. Note that
the zeta-potential distribution is itself part of the problem.

The two key parameters affecting electrophoresis are clearly the charge density σ and the
applied-field magnitude E—no electrophoresis occurs if either of these vanishes. The effect of
surface conduction is embodied in the Dukhin number Du, while ionic convection is represented by
α and ά. The dimensionless particle velocity U is a function of these five parameters.

IV. SMALL DUKHIN NUMBERS

In what follows, we address the small-Dukhin-number limit34

Du ≪ 1. (35)

A. Zero Dukhin numbers: Smoluchowski’s formula

Consider first the solution of the SY model for Du = 0, denoted in what follows by a “0”
subscript. Conditions (30) become homogeneous

∂ϕ0

∂r
= 0,

∂c0

∂r
= 0 at r = 1, (36)

whereby surface conduction is absent. The salt concentration is accordingly uniform, c0 ≡ 1. In
the absence of salt polarization, the zeta potential ζ0 is uniform as well; its value relates to the
surface-charge density through (34), giving

σ = 2 sinh
ζ0

2
. (37)

With a uniform salt, the electrical potential ϕ0 satisfies Laplace’s equation, see (24). The solution
satisfying the homogenous Neumann condition (36) and the large-r approach to a uniform field is

ϕ0 = −E

r +

1
2r2


cos θ. (38)

The flow field is governed by the homogenous Stokes equations

∇ · u0 = 0, ∇p0 = ∇
2u0, (39)

and the standard Helmholtz–Smoluchowski slip condition

u0 = ζ0∇ϕ0 at r = 1. (40)

Finally, as the Maxwell stresses associated with (38) do not contribute35 to the force-free constraint
(28), this constraint simply implies the vanishing of the hydrodynamic force, or, equivalently, the
absence of a Stokeslet term in u0.

As is well-known,3 the flow field satisfying the above problem is an irrotational one, namely,

u0 ≡ ζ0∇ϕ0, p0 ≡ 0. (41)

This field corresponds to the Smoluchowski velocity

U0 = ζ0E. (42)

While this zero-Dukhin-number approximation is linear in E, we emphasize that no weak-field
linearization is invoked in its derivation.
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B. Non-zero Dukhin numbers

For small but finite Du, we linearize about the preceding zero-Dukhin-number solution. Thus,
the pertinent fields are expanded as

ϕ = ϕ0 + Du ϕ1 + · · ·, c = 1 + Du c1 + · · · u = ζ0∇ϕ0 + Du u1 + · · · (43)

and

p = Du p1 + · · ·. (44)

With salt polarization, the zeta potential is no longer uniformly distributed. Indeed, from (34),
we find the expansion

ζ = ζ0 − Du c1 tanh
ζ0

2
+ · · ·, (45)

where c1 is evaluated at r = 1. A comparable expansion of the stress tensors and the force-free
constraint implies the following expansion of the electrophoretic velocity:

U = ζ0E + Du U1 + · · ·. (46)

Our goal is the calculation of the correction U1 to Smoluchowski’s velocity.

C. Polarization due to surface conduction at O(Du)
The salt perturbation is governed by the diffusion–advection equation [see (24)]

∇2c1 = αζ0∇ϕ0 · ∇c1, (47)

together with the boundary condition

∂c1

∂r
= 3E cos θ at r = 1, (48)

obtained by substitution of (38) into (30). In addition, c1 decays at large distances from the particle
[see (27)]

c1→ 0 as |x| → ∞. (49)

Noting that ϕ0/E is parameter-free, it is advantageous to rewrite (47) as

∇2c1 = Pe∇(ϕ0/E) · ∇c1, (50)

where

Pe = αζ0E (51)

is the effective Péclet number representing the ratio of advection to diffusion at O(Du).30 Equations
(48)–(50) imply a solution of the form c1 = E f (x; Pe). Since Pe itself depends on E, the polarization
is, in general, nonlinear in the applied field.

The electric potential perturbation ϕ1 is governed by the equation [see (24)]

∇2ϕ1 + (1 − άζ0)∇ϕ0 · ∇c1 = 0, (52)

together with the boundary condition

∂ϕ1

∂r
= −3E cos θ at r = 1, (53)

and the attenuation condition

ϕ1→ 0 as |x| → ∞. (54)

Considering c1 as known, the solution to this problem can actually be bypassed by noting from (50)
and (52) that the linear combination

c1 +
αζ0

1 − άζ0
ϕ1
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satisfies Laplace’s equation and can be readily solved for using (48), (49), (53), and (54). This yields

ϕ1 = −
3E(1 − αζ0 − άζ0)

2αζ0

cos θ
r2 −

1 − άζ0

αζ0
c1. (55)

Expression (55) should be handled with care in the limit α → 0. Since convection is absent
from (50) in this limit, c1 is readily found as the dipole

lim
α→0

c1 = −
3E cos θ

2r2 . (56)

The potential ϕ1 is then obtained by solving (52) using (56) together with the boundary condition
(53) and the far-field decay. This yields36

lim
α→0

ϕ1 = E2 4r3 − 1
8r4 +

3
2r2 EP(1)(cos θ) + E2 2r − 1 − 2r3

4r4 P(2)(cos θ), (57)

wherein P(n) is the Legendre polynomial of degree n.

D. Leading order correction to Smoluchowski’s velocity

The O(Du) flow field is governed by the inhomogenous Stokes equations

∇ · u1 = 0, ∇p1 = ∇
2u1 + ∇

2ϕ1∇ϕ0, (58)

together with the slip boundary condition

u1 = ζ0∇sϕ1 − c1 tanh
ζ0

2
∇sϕ0 − 4 ln (cosh(ζ0/4))∇sc1, (59)

in which the three terms, respectively, represent electro-osmosis due to the action of the perturbed
field on the equilibrium charge, electro-osmosis due to the action of the primary field on the per-
turbed Debye-layer charge, and diffuso-osmosis due to salt polarization. In addition, it satisfies the
far-field condition

u1→ −U1 ı̂ as |x| → ∞. (60)

The velocity correction U1 must be chosen such that the zero-force condition (28) is satisfied at
O(Du). At this order, (28) involves both a Newtonian-stress contribution

N1 = −p1I + ∇u1 + (∇u1)†, (61)

and a Maxwell-stress contribution

M1 = ∇ϕ0∇ϕ1 + ∇ϕ1∇ϕ0 − ∇ϕ0 · ∇ϕ1I. (62)

Once ϕ1 and c1 are known, the preceding flow problem is self contained. While it may be
solved in a rather straightforward manner, such a solution is actually not required as we are
only interested in the electrophoretic speed. Thus, employing a method due to Brenner37 (see
also Ref. 38) which utilizes the Lorentz reciprocal theorem, we obtain

U1 =
1

6π


r=1

dA n̂ · Ñ · u1 + ı̂ ·


r=1

dA n̂ ·M1 +


r>1

dV ũ · ∇ϕ0∇
2ϕ1


, (63)

where ũ is an auxiliary flow field corresponding to pure translation of the particle with unit velocity
in the ı̂ direction and Ñ is the corresponding stress tensor. Employing the well-known expressions
for these fields39 and using (38), we find that

n̂ · Ñ = 3
2

sin θ êθ, ũ · ∇ϕ0 = E

a(r) + b(r)P(2)(cos θ) , (64)

in which

a(r) = −1 − r2 + 4r5

4r6 , b(r) = −1 − 5r2 − 2r3 + 2r5

4r6 . (65)
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According to the present scheme, evaluation of the velocity correction U1 amounts to the
solution of the diffusion–advection problem (48)–(50) governing the salt perturbation c1. With c1
known, the potential perturbation ϕ1 is found through (55). The velocity correction is U1 then
evaluated through (63).

V. SEMI-ANALYTIC SOLUTION

Since the diffusion–advection equation (50) does not possess a closed-form analytic solution,
it is solved via a standard expansion in Legendre polynomials. The details of this semi-analytic
calculation are provided in Appendix A.

Note that the velocity correction U1 is a function of E and ζ0 [the latter being directly related
to σ through (37)], as well as the parameters α and ά. In Fig. 2, we present U1 as a function of E
for the typical values ζ0 = 5 and α± = 0.25 (corresponding to α = 0.25 and ά = 0). The numerical
simulations show a transition from negative values of U1 at weak fields to positive values at stronger
fields. (Because of the logarithmic scale, we employ two separate graphs, showing −U1 at weaker
fields and U1 at stronger fields.) We also notice that the linear dependence upon E at weak fields
transforms to a different power law at strong fields.

In what follows, we consider several limiting cases which allow for the derivation of closed-form
approximations for the velocity correction. These approximations highlight the above-mentioned
trends observed in the semi-analytic solution.

VI. APPROXIMATE EXPRESSIONS FOR THE VELOCITY CORRECTION

As already explained, calculation of U1 is essentially reduced to solving the diffusion–advection
problem (48)–(50) governing c1. The solution of that problem depends on the value of the effective

FIG. 2. The velocity correction U1 as a function of E for ζ0 = 5 and α± = 0.25: (a) −U1 (weaker fields); (b) U1 (stronger
fields). The dashed lines represent the weak-field linearization (67) and strong-field approximation (71).
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Péclet number (51). This suggests carrying out asymptotic analyses for small and large Pe. Note that
the three parameters forming Pe (namely, α, ζ0, and E) also appear independently in the calculation
of the potential ϕ1 [see (52) and (53)] and then also in the evaluation of U1 using (63) [see (59)].
Thus, one must be more specific in defining the approximation involved when considering either
small or large Péclet numbers.

Hereafter, we keep the zeta potential ζ0 fixed carrying out the various approximations. Small
Péclet numbers are then accordingly realized for either weak fields, E ≪ 1, or, alternatively, moder-
ate fields with weak ionic convection, α± ≪ 1 [the latter limit corresponding to small ions, see (7)].
In view of (8), the approximation of large Péclet numbers is unique: it is only realized in the limit of
strong fields, E ≫ 1. We therefore have three separate limits to consider.

A. Weak fields

We first consider the weak-field limit, E ≪ 1. In this régime, small Péclet numbers are real-
ized [see (51)] whereby convection is absent from the salt balance (50). The salt perturbation is
accordingly given by (56). The potential is then immediately obtained from (55)

ϕ1 ∼
3E cos θ

2r2 . (66)

The velocity correction is found by evaluating (63) to leading order, namely, O(E). Only the first
term in the right-hand side, corresponding to the slip mechanism, contributes at this order; the
second and third terms in the right-hand side of (63) are O(E2). Moreover, when calculating the
slip term using (59), we find that only the first and third terms in that formula contribute at O(E).
Thus, substituting (56) and (66) into the slip boundary condition (59), the velocity correction U1 is
evaluated from (63) to be

U1 ∼ − [4 ln cosh(ζ0/4) + ζ0] E. (67)

As U1 < 0, the first effect of surface conduction is to retard the particle motion. The agreement of the
weak-field approximation (67) with the numerical results is clearly seen in Fig. 2.

Of course, the weak-field mobility can be found directly from the macroscale model (24)–(28)
without the restriction to small Dukhin numbers. Indeed, such a straightforward linearization was
carried out in Ref. 24, yielding40

U ∼
ζ0 + Du [ζ0 − 4 ln cosh(ζ0/4)]

1 + 2Du
E (68)

(which is equivalent to the expression provided by O’Brien11). At small Du, it is readily verified that
the preceding approximation yields (67).

The weak-field approximations (67) and (68) are compared in Fig. 3 which portrays the vari-
ation of the electrophoretic mobility U/E as a function of ζ0 for δ = 0.005 and α± = 0.25. [With δ
and α± prescribed, the Dukhin number becomes a function of ζ0 through (29) and (37).] Also shown
is Smoluchowski’s approximation, linear in ζ0, and the numerically calculated mobility based upon
the weak-field scheme of O’Brien and White,7 valid for arbitrary Debye thickness. Note that Smolu-
chowski’s formula breaks down before approximation (67) does. This is consistent with their formal
range of validity, as the former is valid for zero Dukhin numbers while the latter is valid for small
Dukhin numbers.

B. Small ions

Small Péclet numbers can also be realized under moderate fields [E = O(1)] when α is small,
see (51). As is evident from (7), the limit α ≪ 1 corresponds to small ions. As already seen, in this
limit the salt and potential perturbations are respectively given by (56) and (57). Evaluation of the
integrals in (63) readily yields

U1 ∼ − [4 ln cosh(ζ0/4) + ζ0] E +
2

21
E3. (69)
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FIG. 3. Comparison of the various weak-field approximations of the electrophoretic mobility as a function of ζ0, with
δ = 0.005 and α± = 0.25: the numerical solution of O’Brien and White7 (squares); the finite-Du approximation (68) (solid
curve); the small-Du approximation, given by (42) and (67) (dashed curve); and Smoluchowski’s solution (dotted line). With
δ and α± prescribed, the Dukhin number becomes a function of ζ0 through (29) and (37) and may accordingly be considered
as alternative independent variable: see top abscissa.

In Fig. 4, we compare this approximation with the semi-analytic calculation of U1, now performed
for ζ0 = 3 and α± = 0.01.

Both Figs. 2 and 4 show a transition from negative to positive values of U1. This transition
is evident in (69). The first term in this approximation, which corresponds to the slip integral in

FIG. 4. The velocity correction U1 as a function of E for ζ0 = 3 and α± = 0.01: (a) −U1 (weaker fields); (b) U1 (stronger
fields). The solid line is the small-ion approximation (69). Also shown (dashed) are the weak-field linearization (67) and
strong-field approximation (71).
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(63), is linear in E, and coincides with the weak-field approximation. As already mentioned, this
term is negative, representing particle retardation due to surface conduction. The second term,
cubic in E, is positive, representing velocity enhancement. It is jointly contributed to by the two
remaining integrals in (63): the positive contribution of the body-force integral, associated with the
action of the applied field on space-charge distribution induced in the “electro-neutral” bulk, wins
over the negative contribution of the Maxwell-stress integral. As the present approximation is not
limited to small values of E, the combination of the linear and cubic terms in (69) represents—at
E = O(1)—the above mentioned transition.

In view of (50) and (51), the small-ion approximation (69) is expected to break down when
E becomes comparable to 1/α. More accurately, we expect a nonuniformity in the approximation
when E is of order 1/ζ0α. This seems in agreement with the observed deviation in Fig. 4 of the
small-ion approximation (69) from the exact numerical solution.

Incidentally, approximation (69) explains some surprising results found in earlier numerical
solutions of the SY model beyond weak fields: see Fig. 5 in Ref. 26. In that figure, the (numerically
evaluated) deviation of the electrophoretic velocity from the linear weak-field approximation is
shown as a function of the applied field (E, in the present notation). At sufficiently weak fields,
the deviation is proportional to E3, in agreement with the weakly nonlinear analysis of Ref. 26.
This proportionality eventually breaks down as the field is increased, as would be expected when
entering the fully nonlinear régime. It was found, however, that for the specific case α = 0, the
proportionality persists even up to E ≈ 1, implying a two-term polynomial variation of the elec-
trophoretic velocity with E. This was quite surprising, as the SY model does not seem to admit
a closed-form solution for α = 0, and, in any event, would not be compatible with such a simple
polynomial variation. Given the present (69), we now understand that the value Du = 0.5 used in
Fig. 5 of Ref. 26 was apparently small enough to render the small-Dukhin-number approximation
of the present paper effectively valid. [In fact, applying the double limit Du→ 0 and α → 0 to the
cubic term in the weak-field approximation of Ref. 26 yields 2DuE3/21, in agreement with (69).]

C. Strong fields—diffusive boundary layer

When E ≫ 1, the effective Péclet number (51) is large. In that limit, the diffusion–advection
equation (50) becomes

∇(ϕ0/E) · ∇c1 ≈ 0, (70)

implying that c1 is constant on the field lines of ∇ϕ0. From (38), we see that these field lines are
open, originating at infinity. Given the decay condition (49), we conclude that c1 vanishes at leading
order. From (50), it then actually follows that c1 vanishes at all higher asymptotic orders which are
powers of E, implying that it is exponentially small. Such a situation, however, is incompatible with
condition (48).

This incompatibility is resolved by recalling that the large-Péclet-number limit is a singular
one, with a small parameter multiplying the highest derivative in the diffusion–advection equation
(50). This indicates the formation of a boundary layer. The emergence of such a layer here follows
from condition (48), which necessitates a concentration gradient normal to the effective boundary.
As E increases, this gradient is more and more confined to the proximity of the effective boundary
r = 1. Because of the intense gradients in that region, approximation (70) does not hold there. A
diffusive boundary layer accordingly develops about r = 1, where the strong tangential advection is
balanced by transverse diffusion.

The width of the new layer, namely, the length scale characterising the concentration polarization,
is set by the balance between the two terms in (50). In view of the finite slip of the velocity field at
r = 1, this width must be O(E−1/2).38 Condition (48) then reveals that c1 is O(E1/2) within the layer.

The boundary-layer analysis and the resulting calculation of U1 are relegated to Appendix B,
where we find

U1 ∼
2
7


6
π
(9 − 4

√
3)


1 − άζ0 + αζ0 tanh

ζ0

2

 
E
αζ0

3/2

. (71)
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FIG. 5. Range of validity of solutions to the problem of dielectric particle electrophoresis in the thin-double-layer limit. The
zeta potential is normalized by the thermal voltage; for the definitions of E and the Dukhin number Du see (5) and (29),
respectively. Smoluchowski’s formula is valid for exceedingly small Dukhin numbers at essentially arbitrary field strengths;
it breaks down only under very intense fields, comparable to δ−1, see Refs. 41 and 42. The weak-field theories of Dukhin8

and O’Brien and Hunter10 are valid for arbitrary Dukhin numbers but are limited to weak fields. The results derived in the
present paper focus upon small but finite Dukhin numbers, thus removing the weak-field limitation.

The numerical pre-factor is ≈0.818. The agreement of this asymptotic approximation with the
numerically evaluated value of U1 is illustrated in Figs. 2 and 4.

Of course, the present strong-field approximation breaks down when the first two terms in the
underlying small-Dukhin-number expansion (46), respectively, of orders E and Du E3/2, become
comparable. Breakdown thus occurs when E becomes of order 1/Du2. Another restriction, E ≪
δ−1, has to do with the solid-polarization effects.41 Since 1/Du2 ∼ δ−2e−ζ, which is the stringent
restriction depends upon the value of δeζ.

As already noted in the Introduction, the small-Dukhin-number limit was addressed in several
previous publications, using what appears like an ad hoc approximation procedure. In the strong-
field limit, these investigations also result in velocity expressions which are proportional to the 3/2
power of the electric field. The coefficients in these expressions do not coincide with that of the
present (71).

VII. CONCLUDING REMARKS

We have employed our recently derived macroscale model24 for electrokinetic flows about
charged dielectric surfaces to analyze the electrophoresis of a spherical dielectric particle at small
(but finite) Dukhin numbers, allowing for an arbitrary magnitude of the applied field. Our solutions
are valid in significant portions of the Du–E parameter space which are covered by neither Smolu-
chowski’s theory nor the weak-field models of O’Brien and his coworkers: see Fig. 5. In fact, with
these additional portions, the theory of particle electrophoresis in the thin-double-layer limit now
encompasses the entire parameter range typical of most realistic scenarios involving micron-sized
particles in aqueous solutions, where the Dukhin numbers are rather small, while the applied fields
are not necessarily weak.

According to our scheme, the small-Dukhin-number correction to Smoluchowski’s velocity
is expressed as a quadrature involving the perturbations to both the electric potential and salt
concentration. The evaluation of the particle velocity then essentially amounts to the solution of
a linear problem governing the salt polarization in the bulk. As the effective Péclet number is not
necessarily small, the salt polarization is not harmonic; the same holds for the electric-potential
perturbation. Consequently, the flow problem is affected by Coulomb body forces in the bulk—a
rather non-standard feature in thin-double-layer analyses. Another novel aspect is the appearance of
a net electric force on the material system bounded by the effective boundary r = 1—namely, the
particle together with the screening diffuse layer surrounding it. Use of Gauss law in conjunction
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with (53) implies that this system is electro-neutral as a whole; nonetheless, the action of the
electric field on this polarized system does yield a net electric force. The velocity correction U1 is
accordingly affected by three mechanisms: effective (electro- and diffuso-osmotic) slip, Coulomb
body forces, and a net electrical force. This is explicit in (63).

Since no analytic solution exists for the diffusion–advection problem governing the salt polari-
zation, it has been solved using an eigenfunction expansion in Legendre polynomials. The resulting
dependence of the velocity correction U1 upon the applied-field magnitude E is portrayed in Figs. 2
and 4. These figures show a transition from negative values of U1 at weak fields to positive values at
large fields.

These semi-analytic results are supplemented by useful asymptotic approximations for small
ions and strong fields, respectively, realizing the opposite limits of small and large Péclet numbers.
(Another small-Péclet-number limit, that of weak fields, is consistent with the classical weak-field
expressions of O’Brien and Hunter.10) The small-ion approximation yields the velocity correction
as a simple polynomial consisting of two terms, respectively, proportional to E and E3. The first
represents the familiar velocity retardation due to surface conduction; the second represents a veloc-
ity enhancement effect dominated by the action of the applied field on the space-charge distribution
induced in the bulk. The strong-field limit corresponds to the formation of a diffusive boundary
layer of O(E−1/2) thickness, where the induced salt polarization and the space charge are confined;
an analytic solution of the boundary-layer profile results in a closed-form approximation for U1,
proportional to E3/2.

In the present contribution, we have employed the macroscale model of Ref. 24 as an infra-
structure for the analysis of spherical-particle electrophoresis at small (but finite) Dukhin numbers
and arbitrary field strengths. The scheme develop herein conveniently lends itself to the comparable
analysis of non-spherical particles. With the zero-Dukhin-number base state being characterized
by a uniform salt concentration and a Helmholtz–Smoluchowski type slip, Morrison’s analysis3

dictates the irrotational flow (41), where the particle translates with Smoluchowski’s velocity and
does not rotate. Thus, evaluation of the O(Du) velocity correction essentially follows the same
prescription as in the present analysis. The difficulties associated with non-sphericity are merely
technical, involving the solution of both the diffusion–advection problem (48)–(50), required for the
calculation of c1, and the resistance-type Stokes problem, required for the evaluation of the auxiliary
field ũ and Ñ appearing in (63). More complicated electrophoresis problems may involve boundary
effects and more than one particle. (Because of finite Maxwell forces,43 the zero-Dukhin-number
solution in these problems is not that given by Morrison.3)

Finally, recall that the macroscale model of Ref. 24 is not limited to electrophoresis prob-
lems. Thus, the small-Dukhin-number paradigm conceived in the present contribution provides a
tractable scheme for systematically analyzing surface conduction beyond weak fields in a variety
of electrokinetic phenomena. We propose that this scheme can be employed to study such funda-
mental problems as salt polarization in microchannel junctions, the generation of phoretic motion
by imposed salt gradients, and nonlinear dielectric response of suspensions.
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APPENDIX A: DETAILS OF THE NUMERICAL CALCULATION

1. Diffusion–advection equation

The field c1 is expanded in terms of Legendre polynomials

c1 = 3E
∞

m=0

C(m)(r; Pe)P(m)(cos θ). (A1)
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Substituting (A1) into the diffusion–advection equation (50), multiplying by P(n)(cos θ) and inte-
grating using the orthogonality properties of the Legendre polynomials yields a set of coupled linear
ordinary differential equations

d2C(n)

dr2 +
2
r

dC(n)

dr
−

n(n + 1)
r2 C(n)(r) = Pe


1
r3 − 1

 
n

2n − 1
dC(n−1)

dr
+

n + 1
2n + 3

dC(n+1)

dr


+

1
r
+

1
2r4

 
n(n − 1)
2n − 1

C(n−1)(r) − (n + 1)(n + 2)
2n + 3

C(n+1)(r)


, n = 0,1,2, . . . (A2)

From (48), we find the corresponding boundary conditions

dC(n)

dr
= δn,1 at r = 1, (A3)

while (49) implies attenuation of C(n) as r → ∞ for all n.
Practically, the infinite series (A1) is truncated after a finite number of terms. This number

increases with the value of the Péclet number. When the Péclet number becomes large, moreover,
most of the variation in c1 occur in proximity to r = 1, necessitating the use of a nonuniform dis-
cretization of r . The resulting truncated system of coupled ordinary differential equations is solved
using Matlab’s bvp4c routine.

2. Numerical evaluation of the velocity correction

With the salt solved for, the potential ϕ1 is given by (55). Thus, calculation of U1 is reduced
to evaluating the three integrals appearing in (63). It is straightforward to express these integrals
in terms of the first three salt modes. Indeed, substitution of (59), and (64) and (65) followed by
integration with respect to θ yields

r=1
dA n̂ · Ñ · u1 = 6πE

1 − άζ0 − αζ0

α
+ 12πE


4 ln cosh(ζ0/4) + 1 − άζ0

α


C(1)(1)

−18πE2 tanh
ζ0

2


C(0)(1) − 1

5
C(2)(1)


. (A4)

Similarly, using (21), (38), and (55), the Maxwell-stress integral becomes

ı̂ ·


r=1

dA n̂ ·M1 = −
36π(1 − άζ0)E2

5αζ0
C(2)(1). (A5)

Finally, the body-force integral is evaluated by substituting (55) and (64) and integrating by parts
with respect to r . This yields

r>1
dV ũ · ∇ϕ0∇

2ϕ1

=
12π(1 − άζ0)E2

αζ0


9
10

C(2)(1) − 3
2

C(0)(1) −
 ∞

1


f (r)C(0)(r) + g(r)C(2)(r) dr


, (A6)

where

f (r) = d
dr


r2 da

dr


, g(r) = 1

5


d
dr


r2 db

dr


− 6b


(A7)

in which the functions a and b are defined in (65).

APPENDIX B: STRONG-FIELD ANALYSIS

In analyzing the diffusive layer, we employ the stretched radial variable

Z = E1/2(r − 1). (B1)
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Following the scaling arguments described in Sec. VI, we expand the excess salt as:

c1 = E1/2C(Z, θ) + C̃(Z, θ) + · · ·. (B2)

The differential equation governing C is obtained by substituting (38) and (B2) into the diffusion–
advection equation (50), yielding

∂2C
∂Z2 + 3αζ0


Z
∂C
∂Z

cos θ −
1
2
∂C
∂θ

sin θ

= 0. (B3)

This is supplemented by the boundary condition [see (48)]

∂C
∂Z
= 3 cos θ at Z = 0, (B4)

and the requirement of exponential attenuation as Z → ∞. We note for future reference that C̃
satisfies a homogeneous condition

∂C̃
∂Z
= 0 at Z = 0; (B5)

in view of the exponentially small salt perturbation outside the diffusive layer, this field (like C)
decays at large Z . The boundary-layer problem governing C is similar to the one encountered in the
investigation of strong-field electrophoresis of moderately charged particles.42 Thus, the solution of
(B3)–(B5) is

C = −


6

παζ0

 θ

0

sin t cos t
λ(t) − λ(θ) exp


−

3αζ0

8
Z2sin4θ

λ(t) − λ(θ)


dt, (B6)

where λ(θ) = cos θ − 1
3 cos3θ.

With the salt profile solved for, the electric potential is readily obtained from (55). In the
absence of salt polarization outside the thin diffusive layer, ϕ1 is harmonic there up to exponentially
small terms; it is simply given by the first term in (55). In the diffusive layer, ϕ1 is obtained by
substituting (B2) into (55)

ϕ1 ∼ −
3
2

E
1 − αζ0 − άζ0

αζ0

cos θ
r2 −

1 − άζ0

αζ0

�
E1/2C(Z, θ) + C̃(Z, θ) · · · � . (B7)

(We do not bother to expand the harmonic dipole term in the inner variable Z .)
The velocity correction U1 is calculated using the quadrature (63). In the present strong-field

limit, the three integrals appearing in (63) must be calculated asymptotically. We show that all three
integrals turn out to be O(E3/2).

Consider the first integral in (63), representing the slip contribution. The integrand consists
of fields evaluated at r = 1, corresponding to evaluation at Z = 0 of the respective diffusive-layer
fields. Of the three terms in the slip expression (59), the second term is O(E3/2), dominating the first
and third terms in (59) which are readily seen to be O(E) and O(E1/2), respectively. Thus, to leading
order, we find 

r=1
dA n̂ · Ñ · u1 ∼ −

9π
2

E3/2 tanh
ζ0

2

 π

0
dθsin3θC |Z=0. (B8)

Consider next the second surface integral appearing in (63), namely, the “Maxwell force.”
Substitution of (38) and (62) in conjunction with (36) yields

ı̂ ·


r=1

dA n̂ ·M1 = −3πE
 2π

0
dθsin2θ


∂ϕ1

∂r
sin θ +

∂ϕ1

∂θ
cos θ

 �����r=1
. (B9)

To asymptotically evaluate this integral, we substitute (B7). We first note that the dipole term in
(B7), which may appear to result in an E2 force, is proportional to cos θ and accordingly does not
to contribute to (B9) (at any asymptotic order). Substituting the remaining series appearing in (B7)
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gives

3πE(1 − άζ0)
αζ0

 2π

0
dθsin2θ


sin θ


E
∂C
∂Z
+ E1/2∂C̃

∂Z

 �����Z=0
+ E1/2 cos θ

∂C
∂θ

�����Z=0
+ o

�
E1/2�


. (B10)

The leading-order term in the integrand appears to result in an O(E2) contribution to the particle
velocity. Condition (B4) implies however that this contribution vanishes. Thus, using (B5), we find

ı̂ ·


r=1

dA n̂ ·M1 ∼
3π(1 − άζ0)

αζ0
E3/2

 π

0
dθsin2θ cos θ

∂C
∂θ

�����Z=0
. (B11)

Last, consider the volumetric integral in (63) associated with the Coulomb body forces acting
on the liquid. Since ϕ1 satisfies Laplace’s equation outside the diffusive layer up to exponentially
small errors, we only need to consider the contribution of the diffusive layer domain, whose volume
is O(E−1/2). In this domain, (65) give

a ∼ −1 +
3
2

E−1/2Z + · · ·, b ∼ 1 −
9
2

E−1/2Z + · · ·, (B12)

from which (64) yields

ũ · ∇ϕ0 ∼ E

P(2)(cos θ) − 1


+ E1/2 3Z

2


1 − 3P(2)(cos θ) + · · ·. (B13)

From (B7), in which the first term is harmonic, we also find

∇2ϕ1 ∼ −
1 − άζ0

αζ0


E3/2∂

2C
∂Z2 + E


2
∂C
∂Z
+
∂2C̃
∂Z2


+ · · ·


. (B14)

The integrand is accordingly O(E5/2). It may appear as though integration over the O(E−1/2)-thick
layer would result in a O(E2) contribution, dominating that of the other two integrals in (63).
However, taking into account both (B4) and the exponential decay of C as Z → ∞, we find that this
leading-order contribution vanishes. The volumetric integral is accordingly O(E3/2) as well:

r>1
dV ũ · ∇ϕ0∇

2ϕ1 ∼ −
2π(1 − άζ0)

αζ0
E3/2

 1

−1
dµ

 ∞

0
dZ


3
2


1 − 3P(2)(µ) Z

∂2C
∂Z2

+

P(2)(µ) − 1

 
∂2C̃
∂Z2 + 2Z

∂2C
∂Z2 + 2

∂C
∂Z


. (B15)

Integration by parts using the boundary conditions satisfied by C and C̃ recasts (B15) as the single
integral

−
3π(1 − άζ0)

αζ0
E3/2

 1

−1


1 − 3P(2)(µ) C |Z=0 dµ. (B16)

We have thus expressed all three contributions to (63) solely in terms of the salt distribution at
the effective boundary Z = 0. Evaluating (B6) there yields

C |Z=0 = −


6

παζ0
I(cos θ), (B17)

where

I(µ) =
 1

µ

s ds
s − µ − 1

3 (s3 − µ3)
. (B18)
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Substitution of (B8), (B11), and (B16) into (63), in conjunction with (B17), yields the velocity
correction

U1 ∼
3E3/2

(6παζ0)1/2

 1

−1

1 − άζ0

αζ0


µ(1 − µ2)I′(µ) + (1 − 3P(2)(µ))I(µ) dµ

+
3
2

tanh
ζ0

2

 1

−1
(1 − µ2)I(µ) dµ


. (B19)

Note that the vanishing of an O(E2) contribution also follows from symmetry arguments.
Using integration by parts, we note that 1

−1


µ(1 − µ2)I′(µ) + (1 − 3P(2)(µ))I(µ) dµ =

3
2

 1

−1
(1 − µ2)I(µ) dµ. (B20)

Thus, expression (B19) is proportional to a single integral, which is readily obtained via substitution
of (B18)  1

−1
(1 − µ2)I(µ) dµ =

8
21

(9 − 4
√

3). (B21)

The result (B19) is readily simplified to yield (71).
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