1,192 research outputs found

    Successful treatment of ciliary body medulloepithelioma with intraocular melphalan chemotherapy: a case report.

    Get PDF
    Intraocular medulloepithelioma is commonly treated with primary enucleation. Conservative treatment options include brachytherapy, local resection and/or cryotherapy in selected cases. We report for the first time the use of targeted chemotherapy to treat a ciliary body medulloepithelioma with aqueous and vitreous seeding. A 17-month-old boy with a diagnosis of ciliary body medulloepithelioma with concomitant seeding and neovascular glaucoma in the right eye was seen for a second opinion after parental refusal of enucleation. Examination under anesthesia showed multiple free-floating cysts in the pupillary area associated with iris neovascularization and a subluxated and notched lens. Ultrasound biomicroscopy revealed a partially cystic mass adjacent to the ciliary body between the 5 and 9 o'clock meridians as well as multiple nodules in the posterior chamber invading the anterior vitreous inferiorly. Fluorescein angiography demonstrated peripheral retinal ischemia. Left eye was unremarkable. Diagnosis of intraocular medulloepithelioma with no extraocular invasion was confirmed and conservative treatment initiated with combined intracameral and intravitreal melphalan injections given according to the previously described safety-enhanced technique. Ciliary tumor and seeding totally regressed after a total of 3 combined intracameral (total dose 8.1 μg) and intravitreal (total dose 70 μg) melphalan injections given every 7-10 days. Ischemic retina was treated with cryoablation as necessary. Three years later, ab interno trabeculotomy followed by 360° gonioscopy-assisted transluminal trabeculotomy 6 months later was performed for uncontrolled intraocular pressure despite antihypertensive drugs combined to cyclophotocoagulation and 7 intravitreal anti-VEGF injections for recurrent iris neovascularization. Cataract was removed at the same operative time. The child has remained disease- and metastasis-free at a 5-year follow-up since the last melphalan injection (25-month follow-up after the combined lensectomy-trabeculotomy) with a controlled intraocular pressure under topical quadritherapy and a best corrected Snellen visual acuity of 0.08. We report for the first time complete regression of a non-infiltrating ciliary body medulloepithelioma with seeding achieved with only a small number of intracameral and intravitreal melphalan injections. Concomitant secondary neovascular glaucoma and cataract needed appropriate management to allow long-term eye and vision preservation

    Methods and apparatus for calculating electromagnetic scattering properties of a structure and for reconstruction of approximate structures

    Get PDF
    Disclosed is a method for reconstructing a parameter of a lithographic process. The method comprises the step of designing a preconditioner suitable for an input system comprising the difference of a first matrix and a second matrix, the first matrix being arranged to have a multi-level structure of at least three levels whereby at least two of said levels comprise a Toeplitz structure. One such preconditioner is a block-diagonal matrix comprising a BTTB structure generated from a matrix-valued inverse generating function. A second such preconditioner is determined from an approximate decomposition of said first matrix into one or more Kronecker products

    Pulsed laser deposition of atomically flat La1-xSrxMnO3 thin films using a novel target geometry

    Get PDF
    A new ablation target geometry is presented that was used to produce thin films of La1-xSrxMnO3 grown heteroepitaxially on SrTiO3 by pulsed reactive crossed-beam laser ablation. The films were grown in order to perform angle-resolved photoelectron spectroscopy, which demands that the surface be atomically flat. In situ and ex situ analysis shows that this condition was met, even after depositing to a thickness of over 100n

    How does flow in a pipe become turbulent?

    Full text link
    The transition to turbulence in pipe flow does not follow the scenario familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile is stable against infinitesimal perturbations for all Reynolds numbers. Moreover, even when the flow speed is high enough and the perturbation sufficiently strong such that turbulent flow is established, it can return to the laminar state without any indication of the imminent decay. In this parameter range, the lifetimes of perturbations show a sensitive dependence on initial conditions and an exponential distribution. The turbulence seems to be supported by three-dimensional travelling waves which appear transiently in the flow field. The boundary between laminar and turbulent dynamics is formed by the stable manifold of an invariant chaotic state. We will also discuss the relation between observations in short, periodically continued domains, and the dynamics in fully extended puffs.Comment: for the proceedings of statphys 2

    Quantum Entanglement and fixed point Hopf bifurcation

    Full text link
    We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space suffers a bifurcation of Hopf type whereas for the second one a pitchfork type bifurcation has been reported

    Simulation of Channel Segregation During Directional Solidification of In—75 wt pct Ga. Qualitative Comparison with In Situ Observations

    No full text
    International audienceFreckles are common defects in industrial casting. They result from thermosolutal convection due to buoyancy forces generated from density variations in the liquid. The present paper proposes a numerical analysis for the formation of channel segregation using the three-dimensional (3D) cellular automaton (CA)—finite element (FE) model. The model integrates kinetics laws for the nucleation and growth of a microstructure with the solution of the conservation equations for the casting, while introducing an intermediate modeling scale for a direct representation of the envelope of the dendritic grains. Directional solidification of a cuboid cell is studied. Its geometry, the alloy chosen as well as the process parameters are inspired from experimental observations recently reported in the literature. Snapshots of the convective pattern, the solute distribution, and the morphology of the growth front are qualitatively compared. Similitudes are found when considering the coupled 3D CAFE simulations. Limitations of the model to reach direct simulation of the experiments are discussed
    corecore