29,282 research outputs found

    Low-energy local density of states of the 1D Hubbard model

    Full text link
    We examine the local density of states (DOS) at low energies numerically and analytically for the Hubbard model in one dimension. The eigenstates represent separate spin and charge excitations with a remarkably rich structure of the local DOS in space and energy. The results predict signatures of strongly correlated excitations in the tunneling probability along finite quantum wires, such as carbon nanotubes, atomic chains or semiconductor wires in scanning tunneling spectroscopy (STS) experiments. However, the detailed signatures can only be partly explained by standard Luttinger liquid theory. In particular, we find that the effective boundary exponent can be negative in finite wires, which leads to an increase of the local DOS near the edges in contrast to the established behavior in the thermodynamic limit.Comment: 6 pages, 4 figures, more information can be found at http://www.physik.uni-kl.de/eggert/papers/index.htm

    Magnetic field induced 3D to 1D crossover in type II superconductors

    Full text link
    We review and analyze magnetization and specific heat investigations on type-II superconductors which uncover remarkable evidence for the magnetic field induced fnite size effect and the associated 3D to 1D crossover which enhances thermal fluctuations.Comment: 26 pages, 19 figure

    Magnetic coupling in highly-ordered NiO/Fe3O4(110): Ultrasharp magnetic interfaces vs. long-range magnetoelastic interactions

    Full text link
    We present a laterally resolved X-ray magnetic dichroism study of the magnetic proximity effect in a highly ordered oxide system, i.e. NiO films on Fe3O4(110). We found that the magnetic interface shows an ultrasharp electronic, magnetic and structural transition from the ferrimagnet to the antiferromagnet. The monolayer which forms the interface reconstructs to NiFe2O4 and exhibits an enhanced Fe and Ni orbital moment, possibly caused by bonding anisotropy or electronic interaction between Fe and Ni cations. The absence of spin-flop coupling for this crystallographic orientation can be explained by a structurally uncompensated interface and additional magnetoelastic effects

    Processing Issues in Top-Down Approaches to Quantum Computer Development in Silicon

    Get PDF
    We describe critical processing issues in our development of single atom devices for solid-state quantum information processing. Integration of single 31P atoms with control gates and single electron transistor (SET) readout structures is addressed in a silicon-based approach. Results on electrical activation of low energy (15 keV) P implants in silicon show a strong dose effect on the electrical activation fractions. We identify dopant segregation to the SiO2/Si interface during rapid thermal annealing as a dopant loss channel and discuss measures of minimizing it. Silicon nanowire SET pairs with nanowire width of 10 to 20 nm are formed by electron beam lithography in SOI. We present first results from Coulomb blockade experiments and discuss issues of control gate integration for sub-40nm gate pitch levels

    Mutual Event Observations of Io's Sodium Corona

    Get PDF
    We have measured the column density profile of Io's sodium corona using 10 mutual eclipses between the Galilean satellites. This approach circumvents the problem of spatially resolving Io's corona directly from Io's bright continuum in the presence of atmospheric seeing and telescopic scattering. The primary goal is to investigate the spatial and temporal variations of Io's corona. Spectra from the Keck Observatory and McDonald Observatory from 1997 reveal a corona that is only approximately spherically symmetric around Io. Comparing the globally averaged radial sodium column density profile in the corona with profiles measured in 1991 and 1985, we find that there has been no significant variation. However, there appears to be a previously undetected asymmetry: the corona above Io's sub-Jupiter hemisphere is consistently more dense than above the anti-Jupiter hemisphere

    Model-independent view on the low-mass proton-antiproton enhancement

    Full text link
    We present a simple interpretation of the recently observed near-threshold proton-antiproton enhancement. It is described by a set of low-energy parameters deduced from the analysis of NantiN experiments at LEAR. We predict a related effect in photoproduction reaction under study by CLAS collaboration.Comment: 10 pages, 2 figure

    Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases

    Get PDF
    Exploding seed pods evolved in the Arabidopsis relative Cardamine hirsuta via morphomechanical innovations that allow the storage and rapid release of elastic energy. Asymmetric lignin deposition within endocarpb cell walls is one such innovation that is required for explosive seed dispersal and evolved in association with the trait. However, the genetic control of this novel lignin pattern is unknown. Here, we identify three lignin-polymerizing laccases, LAC4, 11, and 17, that precisely colocalize with, and are redundantly required for, asymmetric lignification of endocarpb cells. By screening for C. hirsuta mutants with less lignified fruit valves, we found that loss of function of the transcription factor gene SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 7 (SPL7) caused a reduction in endocarpb cell-wall lignification and a consequent reduction in seed dispersal range. SPL7 is a conserved regulator of copper homeostasis and is both necessary and sufficient for copper to accumulate in the fruit. Laccases are copper-requiring enzymes. We discovered that laccase activity in endocarpb cell walls depends on the SPL7 pathway to acclimate to copper deficiency and provide sufficient copper for lignin polymerization. Hence, SPL7 links mineral nutrition to efficient dispersal of the next generation

    Isotope effects in underdoped cuprate superconductors: a quantum phenomenon

    Full text link
    We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in - plane penetration depth naturally follows from the doping driven 3D-2D crossover, the 2D quantum superconductor to insulator transition (QSI) in the underdoped limit and the change of the relative doping concentration upon isotope substitution. Close to the QSI transition both, the isotope coefficient of transition temperature and penetration depth approach the coefficient of the relative dopant concentration, and its divergence sets the scale. These predictions are fully consistent with the experimental data and imply that close to the underdoped limit the unusual isotope effect on transition temperature and penetration depth uncovers critical phenomena associated with the quantum superconductor to insulator transition in two dimensions.Comment: 6 pages, 3 figure

    Correlation between oxygen isotope effects on the transition temperature and the magnetic penetration depth in high-temperature superconductors close to optimal doping

    Full text link
    The oxygen-isotope (^{16}O/^{18}O) effect (OIE) on the in-plane magnetic penetration depth \lambda_{ab}(0) in optimally-doped YBa_2Cu_3O_{7-\delta} and La_{1.85}Sr_{0.15}CuO_4, and in slightly underdoped YBa_2Cu_4O_8 and Y_{0.8}Pr_{0.2}Ba_2Cu_3O_{7-\delta} was studied by means of muon-spin rotation. A substantial OIE on \lambda_{ab}(0) with an OIE exponent \beta_O=-d\ln\lambda_{ab}(0)/d\ln M_O\approx - 0.2 (M_O is the mass of the oxygen isotope), and a small OIE on the transition temperature T_c with an OIE exponent \alpha_O=-d\ln T_{c}/d \ln M_O\simeq0.02 to 0.1 were observed. The observation of a substantial isotope effect on \lambda_{ab}(0), even in cuprates where the OIE on T_c is small, indicates that lattice effects play an important role in cuprate HTS.Comment: 6 pages, 4 figure

    Anisotropic fragmentation in low-energy dissociative recombination

    Full text link
    On a dense energy grid reaching up to 75 meV electron collision energy the fragmentation angle and the kinetic energy release of neutral dissociative recombination fragments have been studied in a twin merged beam experiment. The anisotropy described by Legendre polynomials and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged rate coefficient. For the first time angular dependences higher than 2nd^{nd} order could be deduced. Moreover, a slight anisotropy at zero collision energy was observed which is caused by the flattened velocity distribution of the electron beam.Comment: 8 pages, 4 figures; The Article will be published in the proceedings of DR 2007, a symposium on Dissociative Recombination held in Ameland, The Netherlands (18.-23. July 2008); Reference 19 has been published meanwhile in S. Novotny, PRL 100, 193201 (2008
    corecore