32,130 research outputs found

    Attosecond two-photon interferometry for doubly excited states of helium

    Full text link
    We show that the correlation dynamics in coherently excited doubly excited resonances of helium can be followed in real time by two-photon interferometry. This approach promises to map the evolution of the two-electron wave packet onto experimentally easily accessible non-coincident single electron spectra. We analyze the interferometric signal in terms of a semi-analytical model which is validated by a numerical solution of the time-dependent two-electron Schr\"odinger equation in its full dimensionality.Comment: 5 pages, 4 figure

    A census of massive stars in NGC 346. Stellar parameters and rotational velocities

    Full text link
    Spectroscopy for 247 stars towards the young cluster NGC 346 in the Small Magellanic Cloud has been combined with that for 116 targets from the VLT-FLAMES Survey of Massive Stars. Spectral classification yields a sample of 47 O-type and 287 B-type spectra, while radial-velocity variations and/or spectral multiplicity have been used to identify 45 candidate single-lined systems, 17 double-lined systems, and one triple-lined system. Atmospheric parameters (Teff_eff and loggg) and projected rotational velocities (vev_esinii) have been estimated using TLUSTY model atmospheres; independent estimates of vev_esinii were also obtained using a Fourier Transform method. Luminosities have been inferred from stellar apparent magnitudes and used in conjunction with the Teff_eff and vev_esinii estimates to constrain stellar masses and ages using the BONNSAI package. We find that targets towards the inner region of NGC 346 have higher median masses and projected rotational velocities, together with smaller median ages than the rest of the sample. There appears to be a population of very young targets with ages of less than 2 Myr, which have presumably all formed within the cluster. The more massive targets are found to have lower vev_esinii consistent with previous studies. No significant evidence is found for differences with metallicity in the stellar rotational velocities of early-type stars, although the targets in the SMC may rotate faster than those in young Galactic clusters. The rotational velocity distribution for single non-supergiant B-type stars is inferred and implies that a significant number have low rotational velocity (\simeq10\% with vev_e<40 km/s), together with a peak in the probability distribution at vev_e \simeq300 km/s. Larger projected rotational velocity estimates have been found for our Be-type sample and imply that most have rotational velocities between 200-450 km/s.Comment: Accepted by A&

    Computation with finite fields

    Get PDF
    A technique for systematically generating representations of finite fields is presented. Relations which must be physically realized in order to implement a parallel arithmetic unit to add, multiply, and divide elements of finite fields of 2n elements are obtained. Finally, techniques for using a maximal length linear recurring sequence to modulate a radar transmitter and the means of extracting range information from the returned sequence are derived.*Operated with support from the U.S. Army, Navy and Air Force

    Testing gravity at the Second post-Newtonian level through gravitational deflection of massive particles

    Get PDF
    Expression for second post-Newtonian level gravitational deflection angle of massive particles is obtained in a model independent framework. Several of its important implications including the possibility of testing gravitational theories at that level are discussed.Comment: 5 pages, couple of equations of the previous version are correcte

    Gravitational Lensing by Power-Law Mass Distributions: A Fast and Exact Series Approach

    Get PDF
    We present an analytical formulation of gravitational lensing using familiar triaxial power-law mass distributions, where the 3-dimensional mass density is given by ρ(X,Y,Z)=ρ0[1+(Xa)2+(Yb)2+(Zc)2]ν/2\rho(X,Y,Z) = \rho_0 [1 + (\frac{X}{a})^2 + (\frac{Y}{b})^2 + (\frac{Z}{c})^2]^{-\nu/2}. The deflection angle and magnification factor are obtained analytically as Fourier series. We give the exact expressions for the deflection angle and magnification factor. The formulae for the deflection angle and magnification factor given in this paper will be useful for numerical studies of observed lens systems. An application of our results to the Einstein Cross can be found in Chae, Turnshek, & Khersonsky (1998). Our series approach can be viewed as a user-friendly and efficient method to calculate lensing properties that is better than the more conventional approaches, e.g., numerical integrations, multipole expansions.Comment: 24 pages, 3 Postscript figures, ApJ in press (October 10th

    Quasideuteron configurations in 46V and 58Cu

    Full text link
    The data on low spin states in the odd-odd nuclei 46V and 58Cu investigated with the 46Ti(p,ngamma)46V, 32S(16O,pn)46V and 58Ni(p,ngamma)58Cu reactions at the FN-TANDEM accelerator in Cologne are reported. The states containing large quasideuteron components are identified from the strong isovector M1 transitions, from shell model calculations and from experimental data for low-lying states.Comment: 6 pages, 3 figures, proceedings of the "Nuclear Structure 2000" conference, East Lansing, Michigan, USA, August 15-19, 2000; to appear in Nucl. Phys.

    Magnetic field-tuned superconductor/insulator transition in TiN nanostrips

    Get PDF
    We have measured the electric transport properties of TiN nanostrips with different widths. At zero magnetic field the temperature dependent resistance R(T) saturates at a finite resistance towards low temperatures, which results from quantum phase slips in the narrower strips. We find that the current-voltage (I-V) characteristics of the narrowest strips are equivalent to those of small Josephson junctions. Applying a transverse magnetic field drives the devices into a reentrant insulating phase, with I-V-characteristics dual to those in the superconducting regime. The results evidence that our critically disordered superconducting nanostrips behave like small self-organized random Josephson networks.Comment: 5 pages, 4 figures + supplemen

    Betalains and phenolic compounds of leaves and stems of Alternanthera brasiliana and Alternanthera tenella

    Get PDF
    Betacyanins and phenolic compounds from acetonitrile:acidified water extracts of Alternanthera brasiliana and Alternanthera tenella were characterized and quantified using a high-performance liquid chromatography system coupled with diode array and electrospray mass spectrometry detection. Four betacyanins (amaranthine, isoamaranthine, betanin and isobetanin) were tentatively identified and quantified. Twenty eight phenolic compounds of four different families (hydroxybenzoic and hydroxycinnamic acids, flavones and flavonols) were separated and characterized on the basis of their accurate MS and MS/MS information out of which ten compounds were confirmed by authentic standards. These plant species could be considered as an especially rich source of natural bioactive compounds and potential food colorants. A. brasiliana showed the highest betacyanin and polyphenols content (89 μg/g and 35,243 μg/g, respectively). Among polyphenols, flavonols were the more abundant (kaempferol-glucoside, kaempferol-rutinoside and kaempferol-rhamnosyl-rhamnosyl-glycoside). Meanwhile, A. tenella showed a different polyphenols profile with flavones as major compounds (glucopyranosil-vitexin and vitexin). As a novelty, pentosyl-vitexin and pentosyl-isovitexin were detected for the first time in Alternanthera plants. Both A. brasiliana and A. tenella leaves showed high total polyphenol content and in vitro antioxidant activity (FRAP). These results provide an analytical base concerning the phenolic and betalains composition and the antioxidant properties of two members of the promising Alternanthera gender, for subsequent applications, such as functional food ingredients.Fil: Deladino, Lorena. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Alvarez, I.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: De Ancos, B.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Sánchez Moreno, C.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Molina García, A. D.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Schneider Teixeira, Aline. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; Españ

    NUMERICAL SIMULATION OF AIR – WATER FLOWS IN AN EVAPORATIVE CONDENSER

    Get PDF
    Evaporative condensers present a hard problem for numerical modeling because of the complex phenomena of heat and mass transfer outside of the bundle tubes in turbulent flows. The goal of this work is to study the air and water behavior inside an evaporative condenser operating with ammonia as the refrigerant fluid. A commercial CFD software package (FLUENT) is employed to predict the two-phase flow of air and water droplets in this equipment. The air flow is modeled as a continuous phase using the Eulerian approach while the droplets water flow is modeled as a disperse phase with Lagrangian approach. The coupling between pressure and velocity fields is performed by the SIMPLE algorithm. The pressure, velocity and temperature fields are used to perform qualitative analyses to identify functional aspects of the condenser, while the temperature and the relative humidity evolution contributed to verify the agreement between the results obtained with the numerical model and those presented by equipment manufacturer
    corecore