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A techn ique  for sys temat ica l ly  genera t ing  represen ta t ions  of 
finite fields is presented.  Rela t ions  which mus t  be physical ly  real ized in 
order to implement  a paral lel  a r i thmet ic  uni t  to add, mul t ip ly ,  and  
divide e lements  of finite fields of 2 ~ e lements  are obta ined.  Final ly ,  
techniques  for using a maximal  l eng th  l inear  recurr ing sequence to 
modula te  a radar  t r a n s m i t t e r  and  the  means of ex t rac t ing  range 
in format ion  from the  r e tu rned  sequence are derived.  

I N T R O D U C T I O N  

Recent studies in the area of communications have drawn heavily 
upon theorems and techniques from modern abstract algebra. For 
instance, the properties of error-detecting and error-correcting block 
codes are generally proven by arguments based on theorems from linear 
algebra. Further, the techniques for encoding and decoding are generally 
stated using the language and symbology of modern algebra. As might 
be expected, the algorithms which have been invented sometimes cannot 
be easily implemented in a conventional general-purpose digital com- 
puter. For instance, a rather simple speciM-purpose device, the shift 
register with feedback, can rapidly perform encoding, decoding, or check- 
ing operations which cannot be easily performed by the conventional 
general-purpose computer. 

Among the axiomatic systems which have received special attention 
are mathematical structures known as Galois or finite fields. For in- 
stance, the Bose-Chaudhuri-Hocquenghem (Bose and Ray-Chaudhuri, 
1960; IIocquenghem, 1959) error-correcting code, the most efficient 
multiple-error-correcting block code for independent errors now known, 
owes its conception primarily to results from this area. Further, the 
decoding procedure for this code, discovered by Petcrson (1961) and 

* Operated wi th  suppor t  f rom the  U.S. Army, N a v y  and  Air Force. 
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later generaIized by Zierler and Gorenstein (1961) is stated in terms of 
the theory of finite fields. In constructing an electronic decoder for the 
Bose-Chaudhuri-Hocquenghem code, we found that  by designing the 
arithmetic unit to perform not conventional binary arithmetic, but in- 
stead, Galois field operations, the decoding procedure could be imple- 
mented by a rather simple special-purpose digital machine (Bartee and 
Schneider, 1962). A similar requirement for Galois field arithmetic cir- 
cuits has arisen in some recent applications of linear recurring sequences 
to space object tracking. 

In this paper, we present a technique for (1) systematically generating 
representations of Galois field elements for a field with a given number 
of elements, and (2) describing, ~n a compact, closed form, the relations 
which must be physically realized in order to implement a parallel arith- 
metic unit which can add, subtract, multiply, and divide, using Galois 
field elements. Finally, techniques for using a maximal-length linear 
recurring sequence to modulate a radar transmitter and the means of 
extracting range information from the returned sequence are described. 
This involves determining the number of digits separating two n-tuples 
occurring in a given sequence, and an algorithm which is fast and readily 
implemented is presented. 

I .  R E P R E S E N T A T I O N  S Y S T E M  

A knowledge of the basic properties of Galois fields is assumed. (The 
required material may be found in either Peterson (1961) or Albert 
(1956).) As is conventional, we denote the Galois field of q elements as 
GF(q). Let f ( X )  = X '~ -t- f iX  ~-1 + f~X '~-2 -t- . . .  + f~ be a primitive 
polynomial over GF(q). That  is, the coefficients f~ are elements of GF(q), 
f ( X )  is irreducible, and each of its roots is a generator of the multipliea- 
rive group of GF (qn). 

Using the primitive polynomial f ( X ) ,  we can construct a maximal- 
length linear sequence with period q~-i as follows. Let so, s l ,  s2, • • • , 
s~_l be any sequence of n-elements from GF(q) such that  s l ¢  0 for some 
i =< n -- 1. Then continue the sequence by letting si = - ( f1~-1  -~ 
f~s~-2 -9 "'" + f~.s,_.~) for j = n, n + 1, • .. where the fi  are the coeffi- 
cients of the primitive polynomial chosen above. A sequence formed in 
this way will have period q~ -- 1, and each of the q~ n-tuples which may 
be formed of elements of GF(q), with the exception of the all zero 
n-tuple, will occur exactly once in each period of the sequence. (For 
completeness, short proofs of these two properties may be found in the 
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appendix. Much of what  is now known in this area has been contributed 
by  Zierler (1955, 1959), Huf fmsn  (1956a, 1956b), and Elspas (1959).) 
We shall call a maximal-length linear recurring sequence an M-sequence. 

Now, let us designate by  d the n-tuple of consecutive elements 
(s~, s~+l, . . "  , sr+~_~) from the linear recurring sequence, where 0 < 
r =< q~ - 2. Therd will be q~--I  such n-tuples, and by adding to this set 
of q ~ -  1 n-tuples the n-tuple, 00 • - • 0, which we designate as 0, we can 
form a Galois field of q" elements subject to the following two rules. 

1. Addition of n-tuples is as follows 

( a l , a 2 ,  " "  ,a , , )  + (b i ,  b~, . . .  , b,)  = (al  + bl, a~ + b2, . - .  , a,~ + b~). 

2. Multiplication is defined by the relation d .  M = a~+~('~°d q~-i~ and 
r O - d  = c~.O = 0 . 0  = O. 

[;sing these two rules, a Galois field may  be quite easily generated. 
Two basic theorems in Galois field theory state that ,  (1) any  given 
Galois field must  have p~ elements, where p is s prime integer, and (2) 
every field of p elements is isomorphic to the set of integers added and 
multiplied modulo p. Therefore, in order to construct a field of p~ ele- 
ments,  we s tar t  with the integers modulo p and a primitive polynomial, 
form an M-sequence as described, and the field operations follow directly. 
Proof tha t  the above rules systematical ly generate the field of p"  e!e- 
ments  may  be found in the appendix. 

As an example, let us generate a field of nine elements. GF(3)  = 
{0, 1, 2} is the field of three elements with addition and multiplication 
rood 3. X 2 + X -t- 2 is a primitive polynomial over GF(3) .  Let So = 
! ,  Sl ~--- 0 ,  and, using the relation derived from the primitive polynomial 
s, = --(s~_~ q- 2s,_2), we form the sequence 1, 0, 1, 2, 2, 0, 2, 1, 
1, 0, 1, 2, 2, 0, . . . w h i c h  has period 32 - 1 = 8, and every 2-tuple 
except 00 occurs exactly once in each period. 

Using the rule for forming the a ~' described above, we find tha t  s ° = 
10, a 1 = 01, 2 = 12,~s = 22, - . .  , J  = 11. 

As examples of the addition and multiplication rules, let us find the 
5 £g4 vMues of the sum a -4- a a n d p r o d u e t a .  . 

= (0, 1), ~ = (2, 2). 

-I- a ~ = (0, 1) -~ (2, 2) = (0 + 2, 1 + 2) = (2 ,0 )  -- 4 .  
3 4 H e n c e , ~  + a = ~ .  

(2,  0)  ~ ( 0 ,  2 )  = ~ ,  = . 
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FIG. 1. Galois field ar i thmetic  unit  

1 (o,  1) .  

Therefore, (0, 2) .  (2, 0) - (0, 1). 

II. THE LOGICAL DESIGN OF GALOIS FIELD ARITHMETIC UNITS 

Arithmetic operations over finite fields of 2 n elements are surprisingly 
well suited to implementation by means of digital circuitry. In  fact, for 
fields with a reasonable number of elements, arithmetic operations can 
be implemented by switching circuits which will yield a sum, product, 
quotient, or difference in a single clock period. Tha t  is, such operations 
can be realized by means of combhaational switching circuits ~ instead of 
by  sequences of operations. A block diagram of such an arithmetic ele- 
ment is shown in Fig. 1. The operands are stored in the B-register and 
accumulator before the arithmetic operation is to be performed. The 
combinational networks h~ve as outputs the sum, product, and inverse. 
The box with a t inside represents a transfer gate; when the input line 

1 A combinat ional  switching circuit is a circuit containing only gates (no 
memory elements).  
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l 
connected to the left of the box carries a value of 1, the other input value 
is gated into the memory cell to which the transfer gate is connected 
(McCuskey, 1962). I t  is well known that, given a Boolean algebra expres- 
sion for a combinational network, the network can be implemented in a 
straightforward manner. The remaining part  of this section will de- 
scribe a technique for deriving the Boolean algebra expressions for net- 
works which will physically realize Galois arithmetic operations. 

In order to construct a combinational network which will add two 
n-tuples, we need only implement the n Boolean equations at q- bi, 
a~ q- b2, • .. , a,, if- b~, for addition is componentwise, rood 2 (0 q- 0 = 
1 q- 1 = 0, 0 q- 1 = 1 q- 0 = 1). Sucha  circuit is shown in Fig. 2. 
where the conventional engineering symbol @ is used to designate 
rood 2 adders. 

Since subtraction is the same operation as addition (for b; = - b ,  when 
b~ is an element of GF(2)), the adder will suffice. 

A combinational network which will realize Galois field multiplication 
over GF(2 ~) will have 2n inputs and n outputs, and, therefore, n Boolean 
expressions must be derived. We now show how to derive, in a compact 
closed form, the n required expressions. 

Let  o~i be the n-tuple (0, 0, . - -  , 0, 1 ~', 0, . - .  , 0). The set of vectors 



84 B A R T E E  A N D  S C H N E I D E R  

~ ,  ~2,  " ' "  , o~ t h e n  f o r m  a bas is  for  G F ( 2 ~ ) ,  a n d  a g i v e n  e l e m e n t  a ~ 

of G F ( 2  '~) m a y  be  r e p r e s e n t e d  in  t h e  f o r m  alto1 q- a2~s -4- " - -  d- a , , ~  . 

S ince  e a c h  n o n z e r o  n - t u p l e  occu r s  in  a g i v e n  M - s e q u e n c e ,  for  s o m e  

i i  : a q --- c0~ ; a n d  for  s o m e  is : a ~2 = ¢2 ; • • • ; a n d  for  s o m e  i,, : a ~  = ~ .  

W e  c a n  t h e r e f o r e  also r e p r e s e n t  a g i v e n  e l e m e n t  of G F ( 2  ~) in t h e  f o r m  

axa ~ + a2c/~ -~- . . .  + a,~a~. 2 
N o w ,  l e t  ( a l ,  a s ,  . . .  , a , )  be  t h e  m u l t i p l i e r  and  (b~, b2, . ' .  , b~) t h e  

m u l t i p l i c a n d .  T h e n  c o m p o n e a t s o f  (c~, c~, . . .  , c,~) = (a~,  a~ ,  . . .  , a,~). 

(b~ , b~, • • • , G )  c a n  be  f o u n d  b y  f o r m i n g  t h e  n express ions  

c~ = [al . ' .  a~] [MkI lc = 1, 2, . . . ,  n (1)  

n 

k 
w h e r e  t h e  n s e l e m e n t s  of m a t r i x  M~: a re  [ms,l ;  1 =< p, q =< n a n d  m,~  is 

t h e  /cth c o o r d i n a t e  of  wsc~ = a ~  a ~.  

As  a n  e x a m p l e  of t h e  a b o v e  t e c h n i q u e ,  l e t  us  de r ive  t h e  express ions  

for  a m u l t i p l i e r  for  GF(2S) .  C o n s i d e r  t h e  p r i m i t i v e  p o l y n o m i a l  X ~ + 

X q- 1 a n d  le t  us  s t a r t  o u r  M - s e q u e n c e  w i t h  so = 1, s~ = 0, a n d  s: = 0. 

T h e  M - s e q u e n c e  wil l  t h e n  be  10010111001011 . . .  a n d  ou r  r e p r e s e n t a -  

t i o n  s y s t e m  wil l  be  
2 4 

0 = 000 ~ = 010 ~ = 011 

3 5 
1 = 100 ~ = 101 ~ = 111 

6 
a = 001 a = 110 

2 
A basis  wi l l  t h e n  be  o~1 = 1; ~o2 = c~ ; a n d  coa = a,  a n d  t h e  exp re s s ion  

fo r  t h e  f irs t  e o m p o l l e n t  cl of ( c l ,  c,,, c3) = ( a l ,  a2 ,  a3) '  ( b l ,  b2, ha) is 

E I[ ll cl = [al , a2 , a3] M ~  b2 

b~ 

= [ a l ,  as , a3] 0 b2 

1 b.~ 

= a~ b~ + as b2 + as b3 . 

2 This procedure for deriving the multiplier expressions holds under any choice 
of basis where {~1 , " " ,  ~}  is the basis and a is a generator of the multiplic~tive 
group. Tha t  is, the procedure is not  l imited to representation systems derived 
from M-sequences. 
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a~ bz "~.___~ 

Fit). 3. Galois field multiplier for GF(2 a) 
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(CI~C2, C5) = 

(e,,°2,°3)" (b,,bz, b~) 

Using the same procedure we obtain the relations for c~ and c~. 

c2 = a2bl + alb~ -1- a~b~ + a363, 

e3 = a3bl + a262 + a362 + alb3 ~- a2b~. 

A block diagram for this particular multiplier may be found in Fig. 3. 
Proof that the relations derived above hold may be found in the 
appendix. 

The arithmetic operation of division can be performed by first forming 
the multiplieative inverse of the divisor and then multiplying this 
inverse by the dividend, thus forming the quotient. If time permits-- 
it', for instance, only a few divisions are required--then the multipliea- 
tire inverse may be formed by a sequence of multiplications. This pro- 
eedure will be described first, then a technique will be presented for 
deriving the Boolean algebra equations for a logical circuit which directly 
forms the multiplieative inverse of a given element. 

When the mu!tiplieative inverse is formed using a programmed rou- 
tine, 2n - 2 multiplications are required. A property of Oalois fields is 
that the nonzero elements of GF(2 ~) comprise a cyclic, multiplieative 
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group of order 2 ~ --  1, and  hence f12~-~ = 1 for all fl in the  group. 3 There -  
fore, fl2~-2 = fl-1, for fl" fl2~-2 = ¢2~-1 = 1. 

There  are severM efficient ways  to fo rm the  (2 ~ - 2)gh power  of a 
g iven e lement  ft. An efficient procedure  is to fo rm the  sequence fl, f12 fl~, 
f16, ¢7, . . .  , f12--~ using the  re la t ion 

f l~ .¢~.~ . . .¢~-~ = {[ (¢)~¢]~f l - ' -¢}~ = ~ - ~ .  
n --  1 t imes  

E a c h  step of the  procedure  requires mul t ip ly ing  the  cur rent  value of the  
sequence b y  fl and  squar ing the  result .  I n  all, n --  1 s teps are required.  

T h e  mul t ip l ica t ive  inverse m a y  also be fo rmed  b y  a combina t iona l  
ne twork .  We  shall derive the  equat ions  of this ne twork  for the  case 
where  o:~ = 1. For  the  case where  o~ ¢ 1, the  equat ions  can be ob ta ined  
f rom these b y  per forming  a change of basis. 

Le t  ¢~ = (b l ,  • • • , b~) be  the  e lement  to be inver ted.  T h a t  is, we w a n t  
to find f~-~ = (b~*, . - .  , b~*) such t h a t  (51,  . . .  , b,~) . (b~*, • • • , b ,*)  = 1. 
Let  A be the  ma t r ix  whose i, f l h  en t ry  is the  j t h  componen t  of ~0~. ft. T h e n  
G* is the  minor  of b1¢1 • Proof  t h a t  these relat ions hold m a y  be found in 
the  appendix .  

As an  example,  let us derive the  equat ions  for  the  inver t ing ne twork  
over  GF(23) as cons t ruc ted  above.  We  shall m a k e  use of the  equat ions  
der ived for mul t ip l ica t ion  over  GF(2~).  

col-fl = (1, 0, 0 ) . ( b l ,  b2, b3) 

~,..fl = (0, 1, 0 ) - ( b l ,  b2, b3) 

coa.¢~ = (0, 0, 1) .  (b~, b2, b~) 

I 
bi b2 

A = b~ bl q- 
b2 b3 

bl* = (bl  + b2)(51 + b~_) -t- b~(b~ 

= @1,  b~., ba) 

= (ba, bl + b2, b~ -t- b3) 

= (b~, b3, bl ~- b2) 

b2 b2 + b3 
bl zc b~ 

Jr- ba ) = bl + b2 q- ba % b2b3 

b2* = b2(bl -~" be) -~ b3"ba = b2 -l- ba + bib2 

b3* = b~(b~ -t- ba) + b~(bl ÷ b~) = b2 q- blb~ 

This proper ty  also holds for all fields of p'~ elements,  but  we are interested 
primari ly in the binary case for computer  application. 
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1 

I b2 

F 

~ _ ~ - ' ~  bl* 

(b  I , b  2 ,b 3 ) = 

Ibm* ,b2*,b3*) "- P-' 
Fro. 4, Galois field inverter 

b 5 

i.e., 

See Fig. 4. 

bl* = bl -F (b~ V b3) 

b2* = b~ -}- (bl'. b2) 

ba* = b2 + bib3. 

If it is desired to construct a combinational network which physically 
realizes division, then expressions for the inverter can be combined with 
the multiplication expressions yielding the required equations. 

III. APPLICATION TO TRACKING RADARS 

A conventional tracking radar transmits bursts of electromagnetic 
energy of short time duration; between these pulses the transmitter 
waits for a time period longer than that required for a signal to reach 
the target, be reflected, and then return to the receiver. If the transmitter 
decreases the time interval between pulses below this point, a condition 
known as "range ambiguity" results, making it impossible to determine 
the actual range of the target unless further information is available. If 
the range of the target to be tracked is large, the transmitter must wait 
for significant periods between pulses in order to avoid range ambiguity. 
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Further, in order to determine range precisely, it is desirable that the 
transmitted pulses be of short duration. As a result, the percentage of 
time the radar set is actually transmitting electromagnetic energy may 
be quite small. This results in inefficient usage of the power capabilities 
of the transmitter; if the transmitter could transmit during a higher 
percentage of the total time, more joules would be concentrated on the 
target and reflected, and, from the viewpoint of total energy received, a 
more efficient tracking system constructed. One therefore searches for a 
technique for encoding the transmitted signals so they may be decoded 
without a loss in ranging precision or range ambiguity and with an in- 
crease in the total "on time" for the transmitter. 

M-sequences present an attractive method for encoding the trans- 
mitter for a tracking radar. A sequence with a very long period may be 
generated by a shift register with relatively few stages. Further, for a 
binary M-sequence of period 2 ~ -  1, 2 ~-1 of the digits in a period will be 
ones and 2 ~-1 - 1 will be zeros, since all nonzero n-tuples occur. Thus 
if the radar output is amplitude-modulated, the radar will be transmit- 
ting one-half of the time. Similar advantages also occur if the radar 
transmitter is phase- or angle-modulated and, therefore, on continuously. 

When an M-sequence is used to encode the output of a radar trans- 
mitter, the problem of most efficiently using the returned signals from 
the target (space vehicle) may be approached in several ways. We 
assume, for purposes of this paper, that the returned signals are to be 
converted to signals representing binary digits before the steps required 
to determine the range are initiated. The problem is then to extract the 
range of the target from the sequence of binary digits which comprise the 
output of the radar receiver circuitry (refer to Fig. 5). Since the radar 
channel, even when a transponder is used, is likely to be less than perfect, 
we expect that some of the output digits from the receiver will be in 
error. We would therefore like to use any capabilities that the M-se- 
quence might have to minimize the effects of these errors. Previous 
results (Zierler, 1955, 1959; Huffman 1956a, 1956b) in this area have 
dealt with the autocorrelation properties of M-sequences when examined 
through a complete period. Since the periods necessary to avoid range 
ambiguity are rather long, the problem of comparing a sequence through 
an entire period before making a decision introduces a delay which may 
be longer than can be afforded. That is, in many applications a short 
acquisition time may be a necessity, and attempting to autocorrelate, 
in a serial manner, many translates of the outgoing sequence against 
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the returned sequence, may introduce a prohibitive delay. We have 
therefore chosen to consider m-tuples of the returned signal of length 
much less than 2 ~ -- 1. Given an m, the set of all m-tuples in an M-se- 
quence plus the 0 m-tuple forms an additive group. The set of all m-tu- 
ples, where m > n, therefore forms a linear or group code, and results 
from this area apply (Peterson, 1961). Recent studies (Bartee and 
Wood, 1963) of the codes generated in this way indicate that  they are 
quite good: data concerning the distance properties of codes with 
periods of up to 2 '2 - 1 and for ,~Fs ranging from 30 to 100 may be found 
in Bartee and Wood (1963) which also presents a technique for elimi- 
nating errors from a returned sequence. 

Since we have placed a premium on shortening the delay time to 
acquisition, we are left with the problem of determining the range of the 
target quickly, having eliminated the errors from the incoming sequence. 
Now, knowing the last n-digits that  have been transmitted and the last 
n-digits received, we have only to determine the number of digits, q, 
separating the two n-tuples and then to multiply q by a constant to 
determine the range. Tha t  is, given that  the transmitter  is now trans- 
mitting the first digit of the n-tuple d and that  the receiver has just 
received the n digits comprising E,  the range to the target would be 



90 BARTEE AND SCHNEIDER 

( p E (  [t - r ( r o o d  2 ~ - 1) ]  

2 

where p is the duration of one pulse (the inverse of the p.r.f.), and E is 
the velocity of electromagnetic propagation (refer to Fig. 5). The prob- 
lem is therefore to determine t and r (or t - r).  Since the transmitter  
sequence is generated by  a shift register, it is a simple process to keep 
track of t by  simply connecting a counter which counts rood 2 ~ - 1 and 
stepping it each time the shift register is shifted• 

The problem of determining, in binary integer form, the value of the 
exponent r of d remains for the returned sequence. I t  would be possible 
to store an outgoing n-tuple and count the returning digits until the n- 
tuple was received, but  this would involve waiting a time interval equal 
to tha t  required for the signal to reach the target  and return. We now 
present two ways to shorten the time required to determine the range. 

First, notice tha t  if ~ is a fixed element of GF(2~), then multiplication 
by ~ is a linear transformation and can be physically realized by a logical 
network, corresponding to a matrix, and can be designed using the equa- 
tions from the preceding section• To derive the proper equations we 
substitute the binary values for the components of ~ = (dl ,  d~, • • • , d~) 
into the b~'s for the n matrices described by the equations for the multi- 
plier. 

For instance, let us consider the previous example where the primitive 
polynomial was X ~ + X + 1 and the M-sequence was 10010111001011 
• • • . Let  us multiply a given n-tuple a'  = (a l ,  a2, a3) by a 3 = (1, 0, 1). 
The  appropriate substitution into (bl ,  b2, b~) yields 

Cl = [ a l , a 2 , a a  0 = a l  21- a2 

1 

c2 = [al, a2, a3] 1 = a2 + aa 
0 

c.~ = [a~ ,  a ~ ,  a~] 1 = a~ + a2 + a~ 
1 

where a~.a ~ = (a l ,  a2, a3)-(1, 0, 1) = (c, , c2, c~). 
A block diagram of the logical circuit is shown in Fig. 6, and the corre- 
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r ~ - ~  b3 
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(21 123 = ( z i + 3  
= ( b  I , b z , b 3 ) 

Fro. 6. Multiplier for ~" 

sponding matrix is 

[al, a~, a~] 1 = [c~, c2, c~] 
1 

Using this technique, let us assume that  the minimum range to the 
target is knmvn, and this range corresponds to d digits in the sequence. 
Then the incoming n-tuple a r is transferred into a register, the n-tuple 
a r multiplied by a d, and the result a r+~ compared with the outgoing 

t 
n-tuple a .  If a binary counter is used to record the number of digits 
that  d +d must be shifted until the n-tuple a t is reached, then the binary 
number in the counter plus d equals t - r (rood 2 " -  1), the number of 
digits separating the n-tuples in the sequence. 

A faster procedure for determining r, which requires the construction 
of two logical networks, is as follows. 

Construct a logical network which realizes the function 

g(a  ~) = 0, 0 =< i =< 2 ~ - 1 -  1 

g(a  ¢) = 1, 2 ~-1 < i <  2 ~ -  1. 

The Boolean algebra expression for this function can be derived in either 
standard sum-of-products or product-of-sums canonical forms and then 
minimized. This is a standard problem and procedures for its solution 



92 B A R T E E  A N D  S C H N E I D E R  

have been described by Bartee (1960) and McCluskey and Bartee 
(1962). 4 

Construct a logical network to realize the function h(a  ~') = ( d )  2 = 
2 i ( m o d  2n--l) ~ 82 

. Since (f~ + c~/) ~" + c~/2 where f~, -y E G F ( 2 ~ ) ,  c E G F  

(2), h is a linear transformation and hence corresponds to an n X n 
matrix with entries in GF(2) (the i th row of this matrix is ~i2). This 
matrix yields directly the equations for the logical network which 
realizes the function h. 

Now, let the n-tuple a r be given. The problem is to determine r in 
binary integer notation, i .e. ,  r }--~=o~ oi = r~. .  We determine the r~ serially, 
starting with r~_t, then r~-2, • • • , and finally r0. 

g ( d )  = r~_~ by definition of g. 

" * • r ° n - 2  2r(Inod 2" - 1) = 2@0 + r12 + -}- ,-2~- + r,-12 "-~) 

" " " F on- - I  = r02 + r122 + -~- n-2~. + r~-12 ~ 

_ . . . 2 n -1  
- -  rn-1 + r02 + r122 -}- -}- r~_~ 

Hence 

since 2 n = 1 (rood 2 ~ - 1). 

g [ ( d )  ~] = r._.~. 

Continuing we see that  g { [ ( d )  ~]2} = r~-a, etc. Compute r as follows: 
S t e p  1. (a) Pu t  a r in register. 
(b) g(register) = rn- i .  
S t e p  i,  i = 2, • • • , n.  (a) Put  h(register) into register ( that  is, square 

the register). 
(b) g(register) = r~_¢. 

Using this algorithm, r is computed in 2n operations. 

APPENDIX 

A. AIr-SEQuENCE 

In order to present the proofs for the three properties of M-sequences 
given in Section I, we shall generate a sequence of elements from G F ( q )  

and show that  this sequence satisfies the properties of M-sequences 

4 F o r  l a r g e  n t h e  s i ze  o f  t h i s  n e t w o r k  c a n  b e  q u i t e  l a r g e ,  a a d  t h e  s t a n d a r d  d e s i g n  
p r o c e d u r e ,  a l t h o u g h  s t r a i g h t f o r w a r d ,  c a n  i n v o l v e  m a n y  c a l c u l a t i o n s .  
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stated in Section I. Then we shall show tha t  this sequence is actually 
an M-sequence. 

Since q is a prime power, so is qn, and there exists a field of q~ elements, 
GF(q~). GF(q) is a subfield of GF(q~), and consists of all elements 
of GF(q ~) such tha t  ~q = ~. 

DEFINITION. Let  S be the function on GF(q ~) defined by  

s(~) = E ¢' .  
z=O 

LEMMA i.  Let # and ~/be two members of GF(q") and let c be a mere- 
ber of GF(q). Then:  

(1) S(#)  is a member  of GF(q). 
(2) s ( ~  + ~) = s ( # )  + s ( ~ ) .  
(3) S(c~)  = c s ( # ) .  
PnOOF. (1) 

[S(#)] q = [~ + #~ + ... + ~'-' + #~"-~]~ 
= (#)'+ (#')' + ... + (#~'-')' + (p-~). 

= #~ + #~' + . . .  + #q'-~ + #q" 

= S(fl) since ~ "  = #. 

Therefore, [S(#)] ~ = S(#)  implies tha t  S(#)  is a member  of GF(q). 
(2) 

n--1 n--1 n--1 n- - I  

= z ( # )  + s 6 , ) .  

~--1 u--1 

n - - I  

= ~ c f l  q' since c q = c. 
l = 0  

n - - I  

= c ~ Cq~ = cZ(¢).  
4=0 

As in Section I,  let f ( x )  = X ~ + f i X  ~-I -t- . ' .  + f~ be a primitive 
polynomial over GF(q). Let c~ be a fixed root of f ( X )  = 0 in GF(q~). 

(3) 
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Then each of the q" -- 1 nonzero elements of GF(q ~) equals some power 
of a. F rom now on, f ( X )  and a shall be fixed in our discussion. 

Let  m _> 0 be a positive integer and consider the sequence S(a~) ,  
S (C+~ ) ,  . . .  , S(a~+~), . . . .  We shall show tha t  this sequence satisfies 
the properties of Section I. First  we show tha t  there is a one-to-one 
correspondence between the n-tuples occurring in the sequence and the 
powers of a. 

TItEOnEM 1. There exists a basis ~ ,  . . .  , ~ of GF(q '~) over GF(q) 
such tha t  

C¢[ m + i + l ;  ~ [  m+i+n--l~ 
S ( C + i ) w l  + ~ a  ;~2 + + ~ ) ~ .  O/ ~ * " • 

PROOF : 

S ( ~  ~+~) 

t ~ ( O t  m + i + l )  m OL re+i+1 ÷ ( m+i+l)q ÷ , , ,  ÷ (otrn+i+l)qn--1 

S(~ ~+~+~-~) = ~+~+~-~ + (~+'+'~-~)~ + .- .  + (~+~+~-~)~"-~. 

s ( ~  ~+~) = ( ~ ) ( j )  + ( # ' ) ~ ( J ) ~  + . . .  + (~'~)~-' (o/)~ ~-1 

s (~  ,~+~+~) = ( ~ ) ( ~ ) ( ~ )  + ( ~ ) ~ ( ~ ) ( # ) ~  
+ . . .  + ( ~ ) ~ - ' ( ~ - ~ ) ( ~ ) q ° - ~  

z(~,,÷,+~-~) = ( ~ , ) ( o O - - ~ ( j )  + (~)~(~°)~-~(o/) ~ 

+ . . .  + (~)o°-~ (~o-b~-~(o?)~-t  

i,e., 
[ S(~  ~+') ] r ( a ~ ) l  (a~)ql .,.(e'~)q=-~l ]F(e~) 

~(~+~+1) _ " / ( ~ ) ~  ( ~ ) ~ ( ~ )  . ( ~ ) q ° - ' ( ~ - ~ )  / / ( # )  ~ 

: - ! i i i 

Designate by  A the above n X n matr ix  whose j ,  kth te rm is a3k = 
(am) qk-1 (aq~-l) j-1. Factoring out (a'~) q~-I from the kth column for 
k = 1, 2, . . .  , n we have I A I = I Ikn l  (a~)~ ' - i  I A '  I where 
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l 1 . . -  1 -] 

[A'] = (~)  ( ~ )  . . .  ( ~ - ~ )  
! 

( . ; - ,  iii 
- -  ¢~ q n  I 

Since a has order  q~ 1; a, aq, . - .  , are distinct. Therefore, A' 
is a Van-der -Monde  matr ix  and has nonzero determinant .  Since a ~ O, 
H~-L~ (a~)  q~-~ ~ 0 and therefore [A ! ~- O. Hence,  A is invertible. Let  

= : , ~ol in GF(q~). 

Then  

( a ~) 

Therefore,  

_ ]S(d~÷~+b ] 

-L I j [=( ..:+,,,,_,)J • 
~ /  m~-~dl~,  o . ,  ~(OLm-i-~-}-n--1)(.On a ~ = S(a'~÷~)~ ÷ mc~ )~2 + + 

Tlle space spanned linearly by  ~ , . . . ,  o~ over GF(q) includes all 
powers of a and also O. Since this is all of GF(q') and since the linear 
dimension of GF(q ~) over GF(q) is n, w~, . . .  , ~ is a basis for GF(q') 
over  GF(q). 

P~OPE~TIES OF {S(~=+~)} 

Property 1. The sequence { S (am+*) } is periodic with periodici ty q'~ - 1. 
PnooF :  a is a genera tor  of the mult ipl icative group of GF(q ~) and 

2 i hence 1, a, a ,  . . .  , a ,  . . .  is a sequence with periodici ty qn _ _  1. Since 
each field element has a unique representat ion with respect to the basis 
~ ,  . . .  , ~ ,  Theorem 1 shows tha t  the sequence [S(a~÷~)} also has 
periodici ty q~ - 1. 

Property 2. E v e r y  n-tuple  occurr ing in the sequence is nonzero and 
every  nonzero n- tuple  occurs exact ly once within each period. 

P n o o r :  Under  a ny  basis there is a one-to-one correspondence between 
the nonzero elements of GF(q ~) and the q~ -- 1 nonzero n-tuples over 
aF(q). 

Property 3: Under  the rules for mult ipl icat ion and addi t ion defined in 
Section I, the n-tuples of {S(a~+i)} fo rm the field GF(q'). 
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Pnoor :  Follows directly from Theorem 1. 
Now we show that  any M-sequence can be derived as a sequence of 

the form { S ( C + ~ ) I .  In  order to form the M-sequence [s~l, we must be 
given a primitive polynomial and a nonzero n-tuple over G F ( q ) .  Le~ 

f ( X )  = X '~ -t- f i x  "-~ -t- " "  -k f,~ be a fixed primitive polynomial and 
let a ~ G F ( q  ~) be a zero of f ( X ) .  The polynomial f ( X )  shall be used to 
generate {s~} and a shall be used to generate lS (a '~+~) l .  Let so, s~, • • • , 
s~_~ be the nonzero n-tuple chosen to start the sequence {sd. 

Consider the sequence / S (a~)}. Since every nonzero n-tuple over GF (q) 

occurs in this sequence, there is an integer t such that  So = S(o~t),  

• • • S(d+~-~).  Let m = t and consider the sequence 
lS(a~+~)}. The first n terms of the sequence are so, s~, . . .  , s~_~. Now 
we find the rest of the sequence. 

Since f ( a )  = O, 

~ + f l a  ~-~ + " ' "  + L ~  = 0. 
m + i  

Multiplying by a , 
z' m + i  

a '~+'+~ -k  f l a  ~+¢+~-I -1- " '"  -k j~o~ = O. 

Therefore, 

~+~' S(0) O, S(o?  ~+~+'~ + f~,x ~+~+'~-I + . . .  + j.~a ~ = = 

By Lemma 1, 

S (a  ~+~+~) -k f l S ( a  '~+~+~-1) -k " '"  -k fl, S ( a  m+') = 0 

i.e., 

S(~ ~+~+~) = - ( f l S ( o ?  ~+~+~-~) + . . .  + f,~S(C+~)). 

But we form [sl} by the rule 

s~+~ = - ( f~s~+~-~ + . . .  + f~sd. 

Therefore, S ( a  '~+~) = s~ , S ( a  '~+'~+l) = s~+l, etc., i.e., 

Every  M-sequence therefore, satisfies the properties mentioned in 

Section I. 

B. MULTIPLICAT] ON 

Let F~ be the mapping of GF(2 ~) X GF(2 ~) -~ GF(2) defined by 
F , [ ( a i ,  • • • , a~), @1, • • • , b~)] -- c~ where cl is the ith component of the 
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product of (a t ,  - ' -  , a,~) and (b~, . . .  , b~). This mapping is dependent 
upon our choice of basis. 

LE~I~aA. F~ is a bilinear functional, i.e., Fi(a,  ,~1 q- ~2) = PC(a, ~ )  -k 
F~(ce, ,82) and Fi(a l  + a2, fl) = F~(al,  ~) + F~(~2, f ) .  

P~OOF: Since a(f~ + f:)  = a3~ + el2,  the ith component of a(¢1 + ~2) 
equals the i th component of (c#~i + af2). Since addition of n-tuples is 
componentwise, the i th component, of (af~ + a/32) equals the sum of the 
i th components of a l l  and ~f12. Hence F~(~, fll + f12) = Fi(~, ill) + 
F~(c~, f12). Similarly F~(a~ + a~ , fl) = F~(a~, fl) + F~(a~, fl). Q.E.D. 

Using the fact that  F d a ,  5) is a bilinear functional, we have that  ~ 

F~(~,f) = [a~, - . . ,  a~J/g~(0)~, coo 

C. INVERSION 

F~(,~I, ~ )  
F~(co~, co.,) 

f ~(con , 0)2) 

• . 

• . .  f (co , :J 
• . .  co ) 

!1] 
J 
I 

Let/~ = (bl, . . .  , b~). Multiplication by/5 is a linear transformation 
on GF(2 ~) over GF(2)  and, hence, can be represented by a matrix A with 
respect to the basis 0)i = 1, co~, 0)3, • • • , co, • The i th row of this matrix 
contains the n-components of 0)~f. That  is, the i, j t h  component of A will 
be the j th  component of co,ft. The first row of that  matrix contains the 
components of f .  The matrix A is invertible, A -1 corresponds to multi- 
plication by fl-1, and, hence, its first row contains the components of f-~. 
Since the determinant of A is nonzero, it equals 1, and hence the formula 
for inverting a matrix yields the result that  the l, kth entry in A -t is the 
minor of the k, 1st entry of A. 
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