2,513 research outputs found
Imaging electric fields in the vicinity of cryogenic surfaces using Rydberg atoms
The ability to characterize static and time-dependent electric fields in situ
is an important prerequisite for quantum-optics experiments with atoms close to
surfaces. Especially in experiments which aim at coupling Rydberg atoms to the
near field of superconducting circuits, the identification and subsequent
elimination of sources of stray fields is crucial. We present a technique that
allows the determination of stray-electric-field distributions
at distances of less than from (cryogenic) surfaces using
coherent Rydberg-Stark spectroscopy in a pulsed supersonic beam of metastable
helium atoms. We demonstrate the
capabilities of this technique by characterizing the electric stray field
emanating from a structured superconducting surface. Exploiting coherent
population transfer with microwave radiation from a coplanar waveguide, the
same technique allows the characterization of the microwave-field distribution
above the surface.Comment: 6 pages, 4 figure
Vacuum-ultraviolet frequency-modulation spectroscopy
Frequency-modulation (FM) spectroscopy has been extended to the
vacuum-ultraviolet (VUV) range of the electromagnetic spectrum. Coherent VUV
laser radiation is produced by resonance-enhanced sum-frequency mixing
() in Kr and Xe using two
near-Fourier-transform-limited laser pulses of frequencies
and . Sidebands generated in the output of the second laser ()
using an electro-optical modulator operating at the frequency
are directly transfered to the VUV and used to record FM
spectra. Demodulation is demonstrated both at and
. The main advantages of the method are that its
sensitivity is not reduced by pulse-to-pulse fluctuations of the VUV laser
intensity, compared to VUV absorption spectroscopy is its background-free
nature, the fact that its implementation using table-top laser equipment is
straightforward and that it can be used to record VUV absorption spectra of
cold samples in skimmed supersonic beams simultaneously with
laser-induced-fluorescence and photoionization spectra. To illustrate these
advantages we present VUV FM spectra of Ar, Kr, and N in selected regions
between 105000cm and 122000cm.Comment: 23 pages, 10 figure
Measuring the dispersive frequency shift of a rectangular microwave cavity induced by an ensemble of Rydberg atoms
In recent years the interest in studying interactions of Rydberg atoms or
ensembles thereof with optical and microwave frequency fields has steadily
increased, both in the context of basic research and for potential applications
in quantum information processing. We present measurements of the dispersive
interaction between an ensemble of helium atoms in the 37s Rydberg state and a
single resonator mode by extracting the amplitude and phase change of a weak
microwave probe tone transmitted through the cavity. The results are in
quantitative agreement with predictions made on the basis of the dispersive
Tavis-Cummings Hamiltonian. We study this system with the goal of realizing a
hybrid between superconducting circuits and Rydberg atoms. We measure maximal
collective coupling strengths of 1 MHz, corresponding to 3*10^3 Rydberg atoms
coupled to the cavity. As expected, the dispersive shift is found to be
inversely proportional to the atom-cavity detuning and proportional to the
number of Rydberg atoms. This possibility of measuring the number of Rydberg
atoms in a nondestructive manner is relevant for quantitatively evaluating
scattering cross sections in experiments with Rydberg atoms
Functions of the novel RhoGAP proteins RGA-3 and RGA-4 in the germ line and in the early embryo of C. elegans
We have identified two redundant GTPase activating proteins (GAPs) – RGA-3 and RGA-4 – that regulate Rho GTPase function at the plasma membrane in early Caenorhabditis elegans embryos. Knockdown of both RhoGAPs resulted in extensive membrane ruffling, furrowing and pronounced pseudo-cleavages. In addition, the non-muscle myosin NMY-2 and RHO-1 accumulated on the cortex at sites of ruffling. RGA-3 and RGA-4 are GAPs for RHO-1, but most probably not for CDC-42, because only RHO-1 was epistatic to the two GAPs, and the GAPs had no obvious influence on CDC-42 function. Furthermore, knockdown of either the RHO-1 effector, LET-502, or the exchange factor for RHO-1, ECT-2, alleviated the membrane-ruffling phenotype caused by simultaneous knockdown of both RGA-3 and RGA-4 [rga-3/4 (RNAi)]. GFP::PAR-6 and GFP::PAR-2 were localized at the anterior and posterior part of the early C. elegans embryo, respectively showing that rga-3/4 (RNAi) did not interfere with polarity establishment. Most importantly, upon simultaneous knockdown of RGA-3, RGA-4 and the third RhoGAP present in the early embryo, CYK-4, NMY-2 spread over the entire cortex and GFP::PAR-2 localization at the posterior cortex was greatly diminished. These results indicate that the functions of CYK-4 are temporally and spatially distinct from RGA-3 and RGA-4 (RGA-3/4). RGA-3/4 and CYK-4 also play different roles in controlling LET-502 activation in the germ line, because rga-3/4 (RNAi), but not cyk-4 (RNAi), aggravated the let-502(sb106) phenotype. We propose that RGA-3/4 and CYK-4 control with which effector molecules RHO-1 interacts at particular sites at the cortex in the zygote and in the germ line
Hyperbaric oxygen therapy (HBO) for the treatment of an epidural abscess in the posterior fossa in an 8-month-old infant
Epidural abscesses in children are extremely rare, especially in the posterior fossa. In some cases antibiotic therapy and surgical drainage are insufficient for complete healing. We present the case of an 8-month-old boy who developed an epidural abscess in the posterior fossa after repeated surgical procedures for retrocerebellar arachnoid cysts and hydrocephalus. We decided to use adjuvant hyperbaric oxygen therapy (HBO) to avoid removal of the bone and the existing ventriculoperitoneal shunt. In this way osteomyelitis, potentially leading to bone removal and shunt infection, could be prevented. HBO is a relatively safe, noninvasive and cost-effective therapy to improve healing of chronic and deep-seated wound infections. To our knowledge HBO has never been used before in such a young child in neurosurgery. Multidisciplinary management is recommended to optimize treatment
Wolf-Rayet nebulae as tracers of stellar ionizing fluxes: I. M1-67
We use WR124 (WN8h) and its associated nebula M1-67, to test theoretical
non-LTE models for Wolf-Rayet (WR) stars. Lyman continuum ionizing flux
distributions derived from a stellar analysis of WR124, are compared with
nebular properties via photo-ionization modelling. Our study demonstrates the
significant role that line blanketing plays in affecting the Lyman ionizing
energy distribution of WR stars, of particular relevance to the study of HII
regions containing young stellar populations.
We confirm previous results that non-line blanketed WR energy distributions
fail to explain the observed nebular properties of M1-67, such that the
predicted ionizing spectrum is too hard. A line blanketed analysis of WR124 is
carried out using the method of Hillier & Miller (1998), with stellar
properties in accord with previous results, except that the inclusion of
clumping in the stellar wind reduces its wind performance factor to only
approx2. The ionizing spectrum of the line blanketed model is much softer than
for a comparable temperature unblanketed case, such that negligible flux is
emitted with energy above the HeI 504 edge. Photo-ionization modelling,
incorporating the observed radial density distribution for M1-67 reveals
excellent agreement with the observed nebular electron temperature, ionization
balance and line strengths. An alternative stellar model of WR124 is
calculated, following the technique of de Koter et al. (1997), augmented to
include line blanketing following Schmutz et al. (1991). Good consistency is
reached regarding the stellar properties of WR124, but agreement with the
nebular properties of M1-67 is somewhat poorer than for the Hillier & Miller
code.Comment: 12 pages, 5 figures, latex2e style file, Astronomy & Astrophysics
(accepted
Analysis of Radiation Discretization for Modelling a Spark Gap for Surge Currents
In this paper we address a method for spectrally resolved radiation modelling in thermal plasmas encountered in surge protective devices based on spark gaps. Compared to most switching applications, power input and plasma pressure are much higher which leads to an optically thick plasma with line broadening and enhanced wall ablation. In this situation it is possible to capture the full effect of spectrally resolved radiation on plasma dynamics by performing line-by-line calculations with downsampled absorption spectra. We show that it is possible to achieve radiation convergence with 1000 lines. Approaches for a further reduction of calculation times using band-averaged models and -group models are discussed. The κ-group model is based upon a grouping of the absorption coefficients into subgroups with different ranges of κ before averaging. The spectral calculation results are compared to the approximative methods and significant differences for Rosseland means are observed
- …