177 research outputs found

    Gauge Group TQFT and Improved Perturbative Yang-Mills Theory

    Get PDF
    We reinterpret the Faddeev-Popov gauge-fixing procedure of Yang-Mills theories as the definition of a topological quantum field theory for gauge group elements depending on a background connection. This has the advantage of relating topological gauge-fixing ambiguities to the global breaking of a supersymmetry. The global zero modes of the Faddeev-Popov ghosts are handled in the context of an equivariant cohomology without breaking translational invariance. The gauge-fixing involves constant fields which play the role of moduli and modify the behavior of Green functions at subasymptotic scales. At the one loop level physical implications from these power corrections are gauge invariant.Comment: 28 pages, uuencoded and compressed tar-file, LATEX+4 PS-figures, uses psfig.sty. New appendix and some clarifying modifications, references adde

    A Center-Symmetric 1/N Expansion

    Full text link
    The free energy of U(N) gauge theory is expanded about a center-symmetric topological background configuration with vanishing action and vanishing Polyakov loops. We construct this background for SU(N) lattice gauge theory and show that it uniquely describes center-symmetric minimal action orbits in the limit of infinite lattice volume. The leading contribution to the free energy in the 1/N expansion about this background is of O(N^0) rather than O(N^2) as one finds when the center symmetry is spontaneously broken. The contribution of planar 't Hooft diagrams to the free energy is O(1/N^2) and sub-leading in this case. The change in behavior of the diagrammatic expansion is traced to Linde's observation that the usual perturbation series of non-Abelian gauge theories suffers from severe infrared divergences. This infrared problem does not arise in a center-symmetric expansion. The 't Hooft coupling \lambda=g^2 N is found to decrease proportional to 1/\ln(N) for large N. There is evidence of a vector-ghost in the planar truncation of the model.Comment: 27 pages, 2 figures; extended and corrected version with additional material and reference

    An operatorial approach to stock markets

    Full text link
    We propose and discuss some toy models of stock markets using the same operatorial approach adopted in quantum mechanics. Our models are suggested by the discrete nature of the number of shares and of the cash which are exchanged in a real market, and by the existence of conserved quantities, like the total number of shares or some linear combination of cash and shares. The same framework as the one used in the description of a gas of interacting bosons is adopted

    Ghost Condensates and Dynamical Breaking of SL(2,R) in Yang-Mills in the Maximal Abelian Gauge

    Full text link
    Ghost condensates of dimension two in SU(N) Yang-Mills theory quantized in the Maximal Abelian Gauge are discussed. These condensates turn out to be related to the dynamical breaking of the SL(2,R) symmetry present in this gaugeComment: 16 pages, LaTeX2e, final version to appear in J. Phys.

    Semiclassical Estimates of Electromagnetic Casimir Self-Energies of Spherical and Cylindrical Metallic Shells

    Full text link
    The leading semiclassical estimates of the electromagnetic Casimir stresses on a spherical and a cylindrical metallic shell are within 1% of the field theoretical values. The electromagnetic Casimir energy for both geometries is given by two decoupled massless scalars that satisfy conformally covariant boundary conditions. Surface contributions vanish for smooth metallic boundaries and the finite electromagnetic Casimir energy in leading semiclassical approximation is due to quadratic fluctuations about periodic rays in the interior of the cavity only. Semiclassically the non-vanishing Casimir energy of a metallic cylindrical shell is almost entirely due to Fresnel diffraction.Comment: 12 pages, 2 figure

    On ghost condensation, mass generation and Abelian dominance in the Maximal Abelian Gauge

    Get PDF
    Recent work claimed that the off-diagonal gluons (and ghosts) in pure Yang-Mills theories, with Maximal Abelian gauge fixing (MAG), attain a dynamical mass through an off-diagonal ghost condensate. This condensation takes place due to a quartic ghost interaction, unavoidably present in MAG for renormalizability purposes. The off-diagonal mass can be seen as evidence for Abelian dominance. We discuss why ghost condensation of the type discussed in those works cannot be the reason for the off-diagonal mass and Abelian dominance, since it results in a tachyonic mass. We also point out what the full mechanism behind the generation of a real mass might look like.Comment: 7 pages; uses revtex

    Semiclassical Casimir Energies at Finite Temperature

    Get PDF
    We study the dependence on the temperature T of Casimir effects for a range of systems, and in particular for a pair of ideal parallel conducting plates, separated by a vacuum. We study the Helmholtz free energy, combining Matsubara's formalism, in which the temperature appears as a periodic Euclidean fourth dimension of circumference 1/T, with the semiclassical periodic orbital approximation of Gutzwiller. By inspecting the known results for the Casimir energy at T=0 for a rectangular parallelepiped, one is led to guess at the expression for the free energy of two ideal parallel conductors without performing any calculation. The result is a new form for the free energy in terms of the lengths of periodic classical paths on a two-dimensional cylinder section. This expression for the free energy is equivalent to others that have been obtained in the literature. Slightly extending the domain of applicability of Gutzwiller's semiclassical periodic orbit approach, we evaluate the free energy at T>0 in terms of periodic classical paths in a four-dimensional cavity that is the tensor product of the original cavity and a circle. The validity of this approach is at present restricted to particular systems. We also discuss the origin of the classical form of the free energy at high temperatures.Comment: 17 pages, no figures, Late

    Comments on the Sign and Other Aspects of Semiclassical Casimir Energies

    Full text link
    The Casimir energy of a massless scalar field is semiclassically given by contributions due to classical periodic rays. The required subtractions in the spectral density are determined explicitly. The so defined semiclassical Casimir energy coincides with that obtained using zeta function regularization in the cases studied. Poles in the analytic continuation of zeta function regularization are related to non-universal subtractions in the spectral density. The sign of the Casimir energy of a scalar field on a smooth manifold is estimated by the sign of the contribution due to the shortest periodic rays only. Demanding continuity of the Casimir energy under small deformations of the manifold, the method is extended to integrable systems. The Casimir energy of a massless scalar field on a manifold with boundaries includes contributions due to periodic rays that lie entirely within the boundaries. These contributions in general depend on the boundary conditions. Although the Casimir energy due to a massless scalar field may be sensitive to the physical dimensions of manifolds with boundary, its sign can in favorable cases be inferred without explicit calculation of the Casimir energy.Comment: 39 pages, no figures, references added, some correction

    On the perturbative expansion of a quantum field theory around a topological sector

    Full text link
    The idea of treating general relativistic theories in a perturbative expansion around a topological theory has been recently put forward in the quantum gravity literature. Here we investigate the viability of this idea, by applying it to conventional Yang--Mills theory on flat spacetime. We find that the expansion around the topological theory coincides with the usual expansion around the abelian theory, though the equivalence is non-trivial. In this context, the technique appears therefore to be viable, but not to bring particularly new insights. Some implications for gravity are discussed.Comment: 7 page
    • …
    corecore