506 research outputs found

    Mg / Ca and ή18O in living planktic foraminifers from the Caribbean, Gulf of Mexico and Florida Straits

    Get PDF
    Past ocean temperatures and salinities can be approximated from combined stable oxygen isotopes (ÎŽ18O) and Mg ∕ Ca measurements in fossil foraminiferal tests with varying success. To further refine this approach, we collected living planktic foraminifers by net sampling and pumping of sea surface water from the Caribbean Sea, the eastern Gulf of Mexico and the Florida Straits. Analyses of ÎŽ18O and Mg ∕ Ca in eight living planktic species (Globigerinoides sacculifer, Orbulina universa, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, Globorotalia menardii, Globorotalia ungulata, Globorotalia truncatulinoides and Globorotalia tumida) were compared to measured in situ properties of the ambient seawater (temperature, salinity and ÎŽ18Oseawater) and fossil tests of underlying surface sediments. “Vital effects” such as symbiont activity and test growth cause ÎŽ18O disequilibria with respect to the ambient seawater and a large scatter in foraminiferal Mg ∕ Ca. Overall, ocean temperature is the most prominent environmental influence on ÎŽ18Ocalcite and Mg ∕ Ca. Enrichment of the heavier 18O isotope in living specimens below the mixed layer and in fossil tests is clearly related to lowered in situ temperatures and gametogenic calcification. Mg ∕ Ca-based temperature estimates of G. sacculifer indicate seasonal maximum accumulation rates on the seafloor in early spring (March) at Caribbean stations and later in the year (May) in the Florida Straits, related to the respective mixed layer temperatures of ∌26 ∘C. Notably, G. sacculifer reveals a weak positive linear relationship between foraminiferal derived ÎŽ18Oseawater estimates and both measured in situ ÎŽ18Oseawater and salinity. Our results affirm the applicability of existing ÎŽ18O and Mg ∕ Ca calibrations for the reconstruction of past ocean temperatures and ÎŽ18Oseawater reflecting salinity due to the convincing accordance of proxy data in both living and fossil foraminifers, and in situ environmental parameters. Large vital effects and seasonally varying proxy signals, however, need to be taken into account

    OASIS: {Only Adversarial Supervision for Semantic Image Synthesis}

    Get PDF

    Spin-Peierls transition of the first order in S=1 antiferromagnetic Heisenberg chains

    Full text link
    We investigate a one-dimensional S=1 antiferromagnetic Heisenberg model coupled to a lattice distortion by a quantum Monte Carlo method. Investigating the ground state energy of the static bond-alternating chain, we find that the instability to a dimerized chain depends on the value of the spin-phonon coupling, unlike the case of S=1/2. The spin state is the dimer state or the uniform Haldane state depending on whether the lattice distorts or not, respectively. At an intermediate value of the spin-phonon coupling, we find the first-order transition between the two states. We also find the coexistence of the two states.Comment: 7 pages, 12 eps figures embedded in the text; corrected typos, replaced figure

    Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia.

    Full text link
    Environmental histories that span the last full glacial cycle and are representative of regional change in Australia are scarce, hampering assessment of environmental change preceding and concurrent with human dispersal on the continent ca. 47,000 years ago. Here we present a continuous 150,000-year record offshore south-western Australia and identify the timing of two critical late Pleistocene events: wide-scale ecosystem change and regional megafaunal population collapse. We establish that substantial changes in vegetation and fire regime occurred ∌70,000 years ago under a climate much drier than today. We record high levels of the dung fungus Sporormiella, a proxy for herbivore biomass, from 150,000 to 45,000 years ago, then a marked decline indicating megafaunal population collapse, from 45,000 to 43,100 years ago, placing the extinctions within 4,000 years of human dispersal across Australia. These findings rule out climate change, and implicate humans, as the primary extinction cause

    Excitations of the field-induced soliton lattice in CuGeO3

    Full text link
    Here we report the first inelastic neutron scattering study of the magnetic excitations in the incommensurate phase of a spin-Peierls material. The results on CuGeO3 provide direct evidence of a finite excitation gap, two sharp magnetic excitation branches and a very low-lying excitation which is identified as a phason mode, the Goldstone mode of the incommensurate soliton lattice.Comment: 5 pages, revtex, 4 figures (*.eps), win-zippe

    Dilepton production by bremsstrahlung of meson fields in nuclear collisions

    Get PDF
    We study the bremsstrahlung of virtual omega mesons due to the collective deceleration of nuclei at the initial stage of an ultrarelativistic heavy-ion collision. It is shown that electromagnetic decays of these mesons may give an important contribution to the observed yields of dileptons. Mass spectra of positron-electron and muon pairs produced in central Au+Au collisions are calculated under some simplifying assumptions on the space-time variation of the baryonic current in a nuclear collision process. Comparison with the CERES data for 160 AGev Pb+Au collisions shows that the proposed mechanism gives a noticeable fraction of the observed lepton pairs in the intermediate region of invariant masses. Sensitivity of the dilepton yield to the in-medium modification of masses and widths of vector mesons is demonstrated.Comment: 14 page

    Soliton Lattices in the Incommensurate Spin-Peierls Phase: Local Distortions and Magnetizations

    Full text link
    It is shown that nonadiabatic fluctuations of the soliton lattice in the spin-Peierls system CuGeO_3 lead to an important reduction of the NMR line widths. These fluctuations are the zero-point motion of the massless phasonic excitations. Furthermore, we show that the discrepancy of X-ray and NMR soliton widths can be understood as the difference between a distortive and a magnetic width. Their ratio is controlled by the frustration of the spin system. By this work, theoretical and experimental results can be reconciled in two important points.Comment: 9 pages, 5 figures included, Revtex submitted to Physical Review

    Excitation Spectra of Structurally Dimerized and Spin-Peierls Chains in a Magnetic Field

    Full text link
    The dynamical spin structure factor and the Raman response are calculated for structurally dimerized and spin-Peierls chains in a magnetic field, using exact diagonalization techniques. In both cases there is a spin liquid phase composed of interacting singlet dimers at small fields h < h_c1, an incommensurate regime (h_c1 < h < h_c2) in which the modulation of the triplet excitation spectra adapts to the applied field, and a fully spin polarized phase above an upper critical field h_c2. For structurally dimerized chains, the spin gap closes in the incommensurate phase, whereas spin-Peierls chains remain gapped. In the spin liquid regimes, the dominant feature of the triplet spectra is a one-magnon bound state, separated from a continuum of states at higher energies. There are also indications of a singlet bound state above the one-magnon triplet.Comment: RevTex, 10 pages with 8 eps figure

    Salinity control on Na incorporation into calcite tests of the planktonic foraminifera Trilobatus sacculifer – Evidence from culture experiments and surface sediments

    Get PDF
    The quantitative reconstruction of past seawater salinity has yet to be achieved and the search for a direct and independent salinity proxy is ongoing. Recent culture and field studies show a significant positive correlation of Na/Ca with salinity in benthic and planktonic foraminiferal calcite. For accurate paleoceanographic reconstructions, consistent and reliable calibrations are necessary, which are still missing. In order to assess the reliability of foraminiferal Na/Ca as a direct proxy for seawater salinity, this study presents electron microprobe Na/Ca data, measured on cultured specimens of Trilobatus sacculifer. The culture experiments were conducted over a wide salinity range of 26 to 45, while temperature was kept constant. To further understand potential controlling factors of Na incorporation, measurements were also performed on foraminifera cultured at various temperatures in the range of 19.5 °C to 29.5 °C under constant salinity conditions. Foraminiferal Na/Ca ratios positively correlate with seawater salinity (Na/Caforam = 0.97 + 0.115 ⋅ Salinity, R = 0.97, p < 0.005). Temperature on the other hand exhibits no statistically significant relationship with Na/Ca ratios indicating salinity to be the dominant factor controlling Na incorporation. The culturing results are corroborated by measurements on T. sacculifer from Caribbean and Gulf of Guinea surface sediments. In conclusion, planktonic foraminiferal Na/Ca can be applied as a reliable proxy for reconstructing sea surface salinities, albeit species-specific calibrations might be necessary

    Temperature Dependence of Spin and Bond Ordering in a Spin-Peierls System

    Full text link
    We investigate thermodynamic properties of a one-dimensional S=1/2 antiferromagnetic Heisenberg model coupled to a lattice distortion by a quantum Monte Carlo method. In particular we study how spin and lattice dimerize as a function of the temperature, which gives a fundamental process of the spin-Peierls transition in higher dimensions. The degree of freedom of the lattice is taken into account adiabatically and the thermal distribution of the lattice distortion is obtained by the thermal bath algorithm. We find that the dimerization develops as the temperature decreases and it converges to the value of the dimerization of the ground state at T=0. Furthermore we find that the coupling constants of spins fluctuate quite largly at high temperature and there thermodynamic properties deviate from those of the uniform chain. Doping of non-magnetic impurities causes cut of the chain into short chains with open boundary. We investigate thermodynamic properties of open chains taking relaxation of the lattice into consideration. We find that strong bonds locate at the edges and a defect of the bond alternation appears in the chain with odd number of sites, which causes enhancement of the staggered magnetic order. We find a spreaded staggered structure which indicates that the defect moves diffusively in the chain even at very low temperature.Comment: 7 pages, 17 figures; added comments on section 2 and 3, corrected typo
    • 

    corecore