21 research outputs found

    The Longitudinal Aging Study Amsterdam: cohort update 2016 and major findings

    Full text link

    The role of tenascin-C in tissue injury and tumorigenesis

    Get PDF
    The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer

    Both Transient and Continuous Corticosterone Excess Inhibit Atherosclerotic Plaque Formation in APOE*3-Leiden.CETP Mice

    Get PDF
    Contains fulltext : 118079.pdf (publisher's version ) (Open Access)INTRODUCTION: The role of glucocorticoids in atherosclerosis development is not clearly established. Human studies show a clear association between glucocorticoid excess and cardiovascular disease, whereas most animal models indicate an inhibitory effect of glucocorticoids on atherosclerosis development. These animal models, however, neither reflect long-term glucocorticoid overexposure nor display human-like lipoprotein metabolism. AIM: To investigate the effects of transient and continuous glucocorticoid excess on atherosclerosis development in a mouse model with human-like lipoprotein metabolism upon feeding a Western-type diet. METHODS: Pair-housed female APOE*3-Leiden.CETP (E3L.CETP) mice fed a Western-type containing 0.1% cholesterol for 20 weeks were given corticosterone (50 microg/ml) for either 5 (transient group) or 17 weeks (continuous group), or vehicle (control group) in the drinking water. At the end of the study, atherosclerosis severity, lesion area in the aortic root, the number of monocytes adhering to the endothelial wall and macrophage content of the plaque were measured. RESULTS: Corticosterone treatment increased body weight and food intake for the duration of the treatment and increased gonadal and subcutaneous white adipose tissue weight in transient group by +35% and +31%, and in the continuous group by +140% and 110%. Strikingly, both transient and continuous corticosterone treatment decreased total atherosclerotic lesion area by -39% without lowering plasma cholesterol levels. In addition, there was a decrease of -56% in macrophage content of the plaque with continuous corticosterone treatment, and a similar trend was present with the transient treatment. CONCLUSION: Increased corticosterone exposure in mice with human-like lipoprotein metabolism has beneficial, long-lasting effects on atherosclerosis, but negatively affects body fat distribution by promoting fat accumulation in the long-term. This indicates that the increased atherosclerosis observed in humans in states of glucocorticoid excess may not be related to cortisol per se, but might be the result of complex indirect effects of cortisol
    corecore